期刊论文详细信息
JOURNAL OF COMBINATORIAL THEORY SERIES A 卷:116
The existence and construction of a family of block-transitive 2-(v, 6, 1) designs
Article
Ding Shifeng
关键词: Design;    Block-transitive;    Weil's theorem;   
DOI  :  10.1016/j.jcta.2008.05.003
来源: Elsevier
PDF
【 摘 要 】

Let G be a block-transitive automorphism group of a 2-(v, k, 1) design E). It has been shown that the pairs (G. D) fall into three classes: those where G is unsolvable and is flag-transitive, those where G is a subgroup of A Gamma L(1, q). and those where G is solvable and is of small order. Not much is known about the latter two classes. In this paper, we investigate the existence of 2-(v, 6, 1) designs admitting a block-transitive automorphism group G < AGL(1, q). Using Weil's theorem oil character sums, the following theorem is proved: if a prime power q is large enough and q 31 (mod 60) then there is a 2-(v, 6, 1) design which has a block-transitive, but nonflag-transitive automorphism group G. Moreover, using computers, some concrete examples are given when q is small. (C) 2008 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcta_2008_05_003.pdf 169KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次