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Let G be a block-transitive automorphism group of a 2-(v,k,1)

design D. It has been shown that the pairs (G, D) fall into three
classes: those where G is unsolvable and is flag-transitive, those
where G is a subgroup of A�L(1,q), and those where G is solvable
and is of small order. Not much is known about the latter two
classes.
In this paper, we investigate the existence of 2-(v,6,1) designs
admitting a block-transitive automorphism group G < AGL(1,q).
Using Weil’s theorem on character sums, the following theorem is
proved: if a prime power q is large enough and q ≡ 31 (mod 60)

then there is a 2-(v,6,1) design which has a block-transitive,
but nonflag-transitive automorphism group G . Moreover, using
computers, some concrete examples are given when q is small.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Let v,k be two positive integers such that v > k � 3, a 2-(v,k,1) design D is a system (P , B),
where P is a set of v points and B is a collection of some k-subsets of P , called blocks, such that
any two different points from P lie on exactly one block B ∈ B (see [5]). A flag is a pair (α, B) where
α is a point and B a block containing α.

Let G � Aut D. If G acts transitively on the block set B of D, then G is said to be block-transitive.
Similarly, if G acts transitively on the flags of D, then G is said to be flag-transitive.
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Buekenhout et al. have classified the pairs (G, D) where G is a flag-transitive automorphism group
of D, with the exception of those in which G � A�L(1,q) is a one-dimensional affine group (see [1]).
In recent years, there have been a number of contributions to the classification of the pairs (G, D)

where G is block-transitive on a design D of a given block size k (see [2,3,6,9,10]). According to this
classification, these pairs fall into three classes, those where G is unsolvable and is flag-transitive
(such examples are included in [1]), those where G is a subgroup of A�L(1,q), and those where G is
solvable and is of small order. However, little is known about the latter two classes.

In this paper, we investigate the existence of the pairs (G, D) such that D is a 2-(v,k,1) design,
G is a one-dimensional affine group acting on D as a block-transitive but not flag-transitive group.
We construct such a pair (G, D) for some suitable prime-power q. Using Weil’s theorem on character
sums, we prove that for the case that D is a 2-(v,6,1) design, a pair (G, D) always exists if q is
sufficiently large, then using computers, we give some concrete examples. The main results are the
following theorems.

Theorem 1.1. Suppose q is a prime power and q ≡ 31 (mod 60). Then for every q > 1.21 × 1018 , there exists a
2-(q,6,1) design D which has a block-transitive, but nonflag-transitive automorphism group G < AGL(1,q).

Theorem 1.2. For every prime power q such that q < 5000 and q ≡ 31 (mod 60), there is such a 2-(q,6,1)

design D.

2. Some preliminary results

We always assume that k � 3 is an integer, q is a power of a prime such that q ≡ k(k − 1) + 1
(mod 2k(k − 1)). Let GF(q) be the finite field of q elements, θ a generating element of the multiplica-
tive group GF(q)× . Let

M = 〈
θk(k−1)/2〉, L = 〈

θk(k−1)
〉

be two subgroups of GF(q)× , then [GF(q)× : M] = k(k − 1)/2 and [M : L] = 2.
Given α ∈ L and σ ∈ GF(q), define a map gασ as follows:

gασ : x → αx + σ , ∀x ∈ GF(q).

Let G = GF(q)+ � L denote the set of such maps, G is a subgroup of AGL(1,q) of order q(q − 1)/

k(k − 1).
Let B = {β1, β2, . . . , βk} be a subset of GF(q) consisting of k different elements. Define B− =

{β j − βi | 1 � i < j � k}, clearly |B−| � k(k − 1)/2. For an element g = gασ ∈ G , define B g = {β g
1 , β

g
2 ,

. . . , β
g
k }. Let BG = {B g | g ∈ G}.

Lemma 2.1. M = L ∪̇ (−L), where −L � {−α | α ∈ L}.

Proof. It suffices to show that −1 ∈ M but /∈ L.
There is an integer t such that q − 1 = k(k − 1)(2t + 1), thus

−1 = θ(q−1)/2 = (
θk(k−1)/2)2t+1 ∈ M.

If −1 ∈ L, then

θk(k−1)/2 = θ(q−1)/2−tk(k−1) = (−1) · θ−tk(k−1) ∈ L,

which is not the case. �
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Proposition 2.1. Let B = {β1, β2, . . . , βk} be a k-subset of GF(q). If B− is exactly a system of representatives
of the cosets of M in GF(q)× , then D = (GF(q), BG) is a 2-(q,k,1) design, and G is block-transitive, but not
flag-transitive on D.

Proof. The idea is from [8], in which the case k = 4 was treated.
Let −B− = {−β | β ∈ B−}.
By Lemma 2.1, M = L ∪̇ (−L). Now B− is a system of representatives of the cosets of M in GF(q)× ,

therefore B− ∪̇ (−B−) is a system of representatives of the cosets of L in GF(q)× .
Let ρ1 and ρ2 be two different elements of GF(q), we show that there is a unique element g =

gασ ∈ G such that B g contains both ρ1 and ρ2, that is, D is a 2-(v,k,1) design.
There are two unique integers i, j such that 1 � i �= j � k and (ρ1 − ρ2)L = (βi − β j)L. Let α =

(ρ1 − ρ2)(βi − β j)
−1, σ = (ρ2βi − ρ1β j)(βi − β j)

−1, and g = gασ , then α ∈ L and hence g ∈ G . Under
the map g ,

βi → αβi + σ = βi
ρ1 − ρ2

βi − β j
+ ρ2βi − ρ1β j

βi − β j
= ρ1,

β j → αβ j + σ = β j
ρ1 − ρ2

βi − β j
+ ρ2βi − ρ1β j

βi − β j
= ρ2.

Thus B g contains ρ1 and ρ2.
Conversely, if B g contains ρ1 and ρ2, then there is α ∈ L such that ρ1 = αβi +σ and ρ2 = αβ j +σ ,

hence α = (ρ1 − ρ2)(βi − β j)
−1 ∈ L. The uniqueness of g follows from the fact that such integers i, j

are unique.
In particular, g = g1,0 is the only element of G such that B g contains β1 and β2, therefore, no

element except g = g1,0 fixes the block B . So |BG | = |G| = q(q − 1)/k(k − 1).
Clearly, G is transitive on the block set BG . The number of flags is k × |BG | = q(q − 1)/(k − 1),

which is greater than |G|, so G is not flag-transitive on D. �
Lemma 2.2. Given a finite number of polynomials c10 + c11x + · · · + c1n1 xn1 , c20 + c21x + · · · + c2n2 xn2 , . . . ,

cm0 + cm1x + · · · + cmnm xnm in C[x], if a0 + a1x + · · · + asxs is the product of those polynomials, then

s∑
j=0

|a j | �
m∏

i=1

(|ci0| + |ci1| + · · · + |cini |
)
.

3. Proof of Theorem 1.1

In this section, we apply Proposition 2.1 to 2-(v,6,1) designs. Let q be a prime power with q ≡ 31
(mod 60), θ a generating element of GF(q)× , M = 〈θ15〉, and L = 〈θ30〉. In view of Proposition 2.1, we
find if there is a set B = {β1, β2, . . . , β6} such that B− is a system of representatives of the cosets
of M in GF(q)× , then from G = GF(q)+ � L a 2-(q,6,1) design on which G is block-transitive, but not
flag-transitive can be constructed.

We show that for large q, such a subset B always exists. The idea is to find an element β ∈ GF(q)×
such that B = {0,1, β,β2, β3, β4} satisfies the requirement. Now B− = {1, β, . . . , β4} ∪ {β j − β i | 0 �
i < j � 4}, the elements of B− are listed as follows:

1 β − 1 β2 − 1 β3 − 1 β4 − 1
β β(β − 1) β

(
β2 − 1

)
β
(
β3 − 1

)
β2 β2(β − 1) β2

(
β2 − 1

)
β3 β3(β − 1)

β4.

(3.1)
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Lemma 3.1. Let B = {0,1, β,β2, β3, β4}. If β ∈ GF(q)× satisfies the following conditions

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

β ∈ Mθ ∪ Mθ−1,

β10(β − 1) ∈ M,

β11(β + 1) ∈ M,

β8
(
β2 + β + 1

) ∈ M,

β10
(
β2 + 1

) ∈ M.

(3.2)

Then B− is a system of representatives of the cosets of M in GF(q)× .

Proof. The cosets of M in GF(q)× are Mθ j , where j = 0,1, . . . ,14.
If β ∈ Mθ (similarly, β ∈ Mθ−1), then (β − 1) ∈ Mθ5, β + 1 ∈ Mθ4, β2 + β + 1 ∈ Mθ7, and

β2 + 1 ∈ Mθ5.
Now the elements in the first column of (3.1) run over Mθ j ( j = 0,1, . . . ,4), the elements in

the second run over Mθ j ( j = 5,6,7,8), the elements in the third run over Mθ j ( j = 9,10,11), the
elements in the fourth are in Mθ12 and Mθ13 respectively, and finally, β4 − 1 = (β + 1)(β − 1)×
(β2 + 1) ∈ Mθ14. �

Intuition tells us that an element β satisfying (3.2) may exist if q is large enough. To prove this,
we need Weil’s theorem on character sums.

Proposition 3.1. (See [7, Theorem 5.41].) Let GF(r) be a finite field, and Ψ a multiplicative character of GF(r)
of order m > 1. Suppose that f ∈ GF(r)[x] is a monic polynomial of positive degree, and that f is not a mth
power of a polynomial. Let d denote the number of distinct roots of f in its splitting field over GF(r). Then for
any element α ∈ GF(r),

∣∣∣∣
∑

x∈GF(r)

Ψ
(
α f (x)

)∣∣∣∣ � (d − 1)
√

r.

Proof of Theorem 1.1. Let Ω = {β | β ∈ GF(q) satisfies (3.2)}. It suffices to show that if q is large
enough then |Ω| > 0.

Let a = e2π i/15 be a 15th root of unity, for any integer j, define Ψ (θ j) = a j , since q ≡ 31 (mod 60),
Ψ is a character of order 15 on GF(q), and so is Ψ −1 = Ψ 14. As usual, define Ψ (0) = 0, Ψ 0(0) = 1.

Let f1(x) = x10(x − 1), f2(x) = x11(x + 1), f3(x) = x8(x2 + x + 1), and f4(x) = x10(x2 + 1).
For j ∈ {1,2,3,4}, we have

1 + Ψ
(

f j(x)
) + · · · + Ψ 14( f j(x)

) =

⎧⎪⎨
⎪⎩

15, if f j(x) ∈ M,

1, if f j(x) = 0,

0, if f j(x) /∈ {0} ∪ M.

(3.3)

Let

F (x) = [
2 − Ψ 5(x) − Ψ −5(x)

] ∏
j∈{2,4,5,8}

[
Ψ (x) + Ψ −1(x) − a j − a− j]. (3.4)

Notice that if x ∈ Mθ j where 3| j, then Ψ 5(x) = Ψ −5(x) = 1, and if x ∈ Mθ j ∪ Mθ− j then Ψ (x) +
Ψ −1(x) = a j + a− j . Therefore,

F (x) =

⎧⎪⎨
⎪⎩

F (θ), if x ∈ Mθ ∪ Mθ−1,

F (0), if x = 0,

0, otherwise.

(3.5)
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Write b = F (θ). A direct calculation shows that

b = 3
∏

j∈{2,4,5,8}

(
2 cos

2π

15
− 2 cos

2 jπ

15

)
≈ 31.94.

Let

H(x) = F (x)
4∏

j=1

[
1 + Ψ

(
f j(x)

) + · · · + Ψ 14( f j(x)
)]

, (3.6)

and consider the sum

S =
∑

x∈GF(q)

H(x).

We partition the set GF(q) into three disjoint parts,

GF(q) = Ω ∪̇ Ω1 ∪̇ Ω2,

where Ω1 = {β | f j(β) = 0 for some j}, and Ω2 = GF(q) − (Ω ∪ Ω1). Clearly, Ω1 = {0, ±1, β | β2 +
β + 1 = 0, or β2 + 1 = 0}, so |Ω1| � 7.

Now

S =
∑
x∈Ω

H(x) +
∑

x∈Ω1

H(x) +
∑

x∈Ω2

H(x). (3.7)

In view of (3.3) and (3.5), we know that if x ∈ Ω , then H(x) = b · 154, while if x ∈ Ω2, then H(x) = 0.
Therefore,

S = 154b|Ω| +
∑

x∈Ω1

H(x). (3.8)

On the other hand, S can be calculated in another way,

S = H(0) +
∑

x∈GF(q)×
H(x). (3.9)

Now expand H(x) in (3.6). For simplicity, we denote Ψ (x) by Ψ , f1(x) by f1, and Ψ ( f1(x)) by
Ψ ( f1), etc.

For x �= 0, Ψ (x)Ψ −1(x) ≡ 1 holds. Hence F (x) can be written as

F (x) = c0 + c1Ψ (x) + c2Ψ
2(x) + · · · + c14Ψ

14(x), (3.10)

and H(x) as

H(x) = c0 +
∑

( j,l,m,s,t)

c jΨ
jΨ l( f1)Ψ

m( f2)Ψ
s( f3)Ψ

t( f4) = c0 +
∑

( j,l,m,s,t)

c jΨ
(
x j f l

1 f m
2 f s

3 f t
4

)
,

then the sum in (3.9) becomes that

S = H(0) +
∑

x∈GF(q)×
c0 +

∑
( j,l,m,s,t)

∑
x∈GF(q)×

c jΨ
(
x j f l

1 f m
2 f s

3 f t
4

)
, (3.11)

where ( j, l,m, s, t) runs over {0,1, . . . ,14}5 − {(0,0,0,0,0)}.
Equating (3.8) and (3.11), we get that

154b|Ω| = c0(q − 1) + H(0) −
∑

x∈Ω1

H(x) +
∑

( j,l,m,s,t)

∑
x∈GF(q)×

c jΨ
(
x j f l

1 f m
2 f s

3 f t
4

)

= c0(q − 1) + S1 + S2, (3.12)

where S1 = H(0) − ∑
x∈Ω H(x), and S2 = ∑

( j,l,m,s,t)

∑
x∈GF(q)×[· · ·].
1
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Notice that |Ψ (x)| � 1, so from (3.6) follows that |H(x)| � 45154, hence

|S1| =
∣∣∣∣H(0) −

∑
x∈Ω1

H(x)

∣∣∣∣ �
(|Ω1| + 1

)
45 · 154 � 8 · 45154. (3.13)

By applying Lemma 2.2 to (3.4), the coefficients in (3.10) satisfy that

|c j| � 45, j = 0,1, . . . ,14.

c0 must be calculated carefully (notice c0 �= F (0)), it follows from (3.4) that

c0 = 4 + 2
[
2 + (

a5 + a−5)(a2 + a−2)][2 + (
a4 + a−4)(a8 + a−8)]

+ 4
(
a5 + a−5 + a2 + a−2)(a4 + a−4 + a8 + a−8)

= 4 + 8

(
1 − cos

4π

15

)(
1 + 2 cos

π

15
cos

7π

15

)
− 8

(
2 cos

4π

15
− 1

)(
cos

π

15
+ cos

7π

15

)

≈ 4.258. (3.14)

For ( j, l,m, s, t) ∈ {0,1, . . . ,14}5 − {(0,0,0,0,0)},
∑

x∈GF(q)×
c jΨ

(
x j f l

1 f m
2 f s

3 f t
4

) =
∑

x∈GF(q)

c jΨ
(
x j f l

1 f m
2 f s

3 f t
4

)
,

since f1(0) = · · · = f4(0) = 0. Now x j f l
1 f m

2 f s
3 f t

4 has at most 7 distinct roots in any extension field of
GF(q). Applying Proposition 3.1, we have∣∣∣∣

∑
x∈GF(q)

c jΨ
(
x j f l

1 f m
2 f s

3 f t
4

)∣∣∣∣ � |c j|(7 − 1)
√

q � 6 · 45√q,

and hence

|S2| =
∣∣∣∣

∑
( j,l,m,s,t)

∑
x∈GF(q)×

c jΨ
(
x j f l

1 f m
2 f s

3 f t
4

)∣∣∣∣ � 6 · 45155√q. (3.15)

From (3.12)–(3.15), we get

154b|Ω| � c0(q − 1) − 8 · 45154 − 6 · 45155√q > c0(q − 1) − 6 · 45155(
√

q + 1)

= c0(
√

q + 1) ·
(√

q − 1 − 6 · 605

c0

)
. (3.16)

Therefore, if q > (1 + 6 · 605/c0)
2 ≈ 1.201 × 1018, then 154b|Ω| > 0, hence |Ω| > 0, which implies

that there is β ∈ GF(q)× satisfying (3.2), as required. �
4. Construct 2-(q,6,1) designs for small q

In view of Proposition 2.1, we see that if B = {β1, β2, . . . , βk} satisfies the proposition, then so does
B g for any g ∈ G = GF(q)+ � L, and so does the set {βπ(1), βπ(2), . . . , βπ(k)} for any permutation π on
{1,2, . . . ,k}. This is from the fact that B− ∪̇ (−B−) is a system of representatives of the cosets of L
and the fact that the map x → x +σ does not change B− . So it is reasonable to assume that maybe a
set B = {0,1, . . .} satisfies the proposition.

In Theorem 1.1 the lower bound for q is coarse, there are two reasons, one is that the coefficients
are estimated coarsely, another is that if a design D exists the block B = {0,1, . . .} in it is unique, in
order to use Weil’s theorem, B is assumed to be {0,1, β, . . . , β4}, the choice of B is limited, maybe
such a β does not exist if q is too small.

Write B = {0,1, θm1 , θm2 , θm3 , θm4 }, B− = {θn1 , θn2 , . . . , θn15 }, where θ generates GF(q)× . By Propo-
sition 2.1, constructing a 2-(q,6,1) design in that way is to find a block B such that {n1,n2, . . . ,n15}



D. Shifeng / Journal of Combinatorial Theory, Series A 116 (2009) 215–222 221
Table 1
Block-transitive 2-(q,6,1) designs G = GF(q) � 〈θ30〉, q < 5000

q Primitive root θ B = {0,1}∪
31 3 {3,8,12,18}
151 6 {12,33,83,90}
211∗ 2 {107∗,55,188,71}
271 6 {3,7,37,157}
331 3 {4,14,262,281}
571 3 {3,10,106,160}
631∗ 3 {242∗,512,228,279}
691∗ 3 {132∗,149,320,89}
751 3 {3,7,148,280}
811 3 {3,9,341,504}
991 6 {3,8,143,552}
1051 7 {82,152,198,486}
1171 2 {8,742,804,1131}
1231∗ 3 {244∗,448,984,51}
1291 2 {73,177,109,986}
1471 6 {148,739,1096,1331}
1531∗ 2 {225∗,102,1516,1218}
1831∗ 3 {571∗,123,655,481}
1951 3 {313,731,1119,1833}
2011∗ 3 {1488∗,33,840,1089}
2131∗ 2 {1785∗,380,642,1623}
2251 7 {532,1107,1547,2161}
2311 3 {395,732,1145,2035}
2371 2 {307,1269,1519,2303}
2551∗ 6 {1477∗,424,1253,1206}
2671 7 {1213,1430,1585,2273}
2731∗ 3 {101∗,2008,714,1108}
2791∗ 6 {800∗,861,2214,1706}
2851 2 {879,2213,2334,2743}
2971 10 {553,1554,1724,2657}
3271∗ 3 {2088∗,2772,1537,405}
3331 3 {208,1693,1993,2980}
3391∗ 3 {1456∗,561,2976,2749}
3511 7 {412,654,2391,3439}
3571 2 {611,618,1258,3014}
3631∗ 15 {693∗,957,2359,837}
3691∗ 2 {1424∗,1417,2522,3676}
3931 2 {688,991,2640,3738}
4051∗ 10 {137∗,2565,3019,401}
4111 12 {198,2362,3202,3796}
4231∗ 3 {1361∗,3374,1379,2486}
4591∗ 11 {40∗,1600,4317,2813}
4651 3 {198,1336,1716,2186}
4831∗ 3 {3049∗,1557,3251,3918}
4951∗ 6 {4211∗,2990,497,3545}

is a complete set of residues modulo 15. When q is small we may use this idea to write a simple
program to search such a block B = {0,1, θm1 , θm2 , θm3 , θm4 }: let m1,m2,m3,m4 run through distinct
congruence classes modulo 15 until finding a required set {n1,n2, . . . ,n15}. For q < 5000 and q = 313,
we have written a C-program to do this work.

It turns out that each prime power q less than 5000 satisfying q ≡ 31 (mod 60) is a prime, and
a primitive root θ can be found in [4]. For each such q we give a block B = {0,1, β1, β2, β3, β4} in
Table 1. If B = {0,1, β,β2, β3, β4} for some β , then the corresponding elements q and β are attached
a sign ∗, respectively. Also we mention that a 2-(31,6,1) design is the projective plane of order 5,
and G = GF(31)+ � 1 is a Singer group.
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Also we obtained a design for q = 313. Let θ be a root of the polynomial x3 − x2 − x − 24 over
GF(31), then GF(313) = GF(31)(θ). It is shown by our C-program that θ is a primitive root of GF(313)× .
Let B = {0,1, θ, θ2, θ3, θ14722}, then we find

θ − 1 = θ7390, θ2 − 1 = θ2540, θ3 − 1 = θ3578, θ14722 − 1 = θ4739,

θ2 − θ = θ7391, θ3 − θ = θ2541, θ14722 − θ = θ7693, θ3 − θ2 = θ7392,

θ14772 − θ2 = θ18744, θ14772 − θ3 = θ11869.

It is not hard to verify that the elements of B− run through the cosets of 〈θ15〉 in GF(313)× . Therefore,
there is also an example for q = 313.

Remark 1. Camina et al. commented in [2] that there are examples (G, D) where D is a 2-(v,4,1)

design with v = 13,37,61,109,157 or 181, G � Aut D is soluble and is block-transitive, but not flag-
transitive on D. J.F. Lin in his thesis (see [8]) proved that there are infinitely many examples (G, D).

Remark 2. We have shown that for each large q, there is a design satisfying Theorem 1.1, and present
examples for small q. A question arises: Is there such a 2-(q,6,1) design for every prime power
q ≡ 31 (mod 60)?

Remark 3. Each design we construct has a block-transitive automorphism group G < AGL(1,q), but
its full automorphism group might be much bigger, for example, the 2-(31,6,1) design constructed
in Section 4 is the projective plane PG(2,5), its full automorphism is PGL(3,5). Thus the following
question is of importance: What is Aut(D) for those designs D?
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