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1. Introduction

Let v,k be two positive integers such that v >k >3, a 2-(v,k, 1) design D is a system (P, B),
where P is a set of v points and B is a collection of some k-subsets of P, called blocks, such that
any two different points from P lie on exactly one block B € B (see [5]). A flag is a pair («, B) where
o is a point and B a block containing «.

Let G <AutD. If G acts transitively on the block set B of D, then G is said to be block-transitive.
Similarly, if G acts transitively on the flags of D, then G is said to be flag-transitive.
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Buekenhout et al. have classified the pairs (G, D) where G is a flag-transitive automorphism group
of D, with the exception of those in which G < AT'L(1, q) is a one-dimensional affine group (see [1]).
In recent years, there have been a number of contributions to the classification of the pairs (G, D)
where G is block-transitive on a design D of a given block size k (see [2,3,6,9,10]). According to this
classification, these pairs fall into three classes, those where G is unsolvable and is flag-transitive
(such examples are included in [1]), those where G is a subgroup of AI'L(1, q), and those where G is
solvable and is of small order. However, little is known about the latter two classes.

In this paper, we investigate the existence of the pairs (G, D) such that D is a 2-(v, k, 1) design,
G is a one-dimensional affine group acting on D as a block-transitive but not flag-transitive group.
We construct such a pair (G, D) for some suitable prime-power q. Using Weil’s theorem on character
sums, we prove that for the case that D is a 2-(v,6,1) design, a pair (G, D) always exists if q is
sufficiently large, then using computers, we give some concrete examples. The main results are the
following theorems.

Theorem 1.1. Suppose q is a prime power and q = 31 (mod 60). Then for every q > 1.21 x 1018, there exists a
2-(q, 6, 1) design D which has a block-transitive, but nonflag-transitive automorphism group G < AGL(1, q).

Theorem 1.2. For every prime power q such that ¢ < 5000 and q = 31 (mod 60), there is such a 2-(q, 6, 1)
design D.

2. Some preliminary results

We always assume that k > 3 is an integer, q is a power of a prime such that g=k(k — 1) + 1
(mod 2k(k — 1)). Let GF(q) be the finite field of q elements, 6 a generating element of the multiplica-
tive group GF(q)*. Let

M= <9k(k—1)/2>’ L= (gk(k—U)

be two subgroups of GF(q)*, then [GF(q)* : M]=k(k —1)/2 and [M : L] =2.
Given o € L and o € GF(q), define a map gy, as follows:

Zouo :X—>ax+o0, VxeGF(q).

Let G = GF(q)™ x L denote the set of such maps, G is a subgroup of AGL(1,q) of order q(q — 1)/
k(k —1).

Let B = {B1,PB2,..., B} be a subset of GF(q) consisting of k different elements. Define B~ =
{Bj— Bi | 1<i<j<k}, clearly |B~| <k(k — 1)/2. For an element g = guo € G, define BE = {8, 5.
..., B} Let B¢ = (B¢ | g e G}.

Lemma21. M =L U (—L), where =L 2 {—a | € L}.

Proof. It suffices to show that —1 € M but ¢ L.
There is an integer t such that g — 1 =k(k — 1)(2t + 1), thus

—1=9@ /2 = (ghk=D/2)2HT ¢ gy
If —1 €L, then
gk(k—l)/Z — g(q—l)/Z—tk(k—U =(=1)- H—tk(k—l) el,

which is not the case. O
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Proposition 2.1. Let B = {f1, B2, ..., Bk} be a k-subset of GF(q). If B~ is exactly a system of representatives
of the cosets of M in GF(q)*, then D = (GF(q), B®) is a 2-(q, k, 1) design, and G is block-transitive, but not
flag-transitive on D.

Proof. The idea is from [8], in which the case k =4 was treated.

Let —B~={-B|BeB}.

By Lemma 2.1, M = LU (—L). Now B~ is a system of representatives of the cosets of M in GF(q)*,
therefore B~ U (—B™) is a system of representatives of the cosets of L in GF(q)*.

Let p; and p; be two different elements of GF(q), we show that there is a unique element g =
Zao € G such that B8 contains both p; and py, that is, D is a 2-(v, k, 1) design.

There are two unique integers i, j such that 1 <i# j <k and (p1 — p2)L = (B; — Bj)L. Let a =
(1= P2)Bi — B~ 0 = (p2Bi — p1Bj)(Bi — Bj) ", and g = gyo, then & € L and hence g € G. Under
the map g,

P2 P2Bi—p1Bj

. ) _g P =
Bi—>api+o ﬂ'ﬂi—ﬂj + Bi— B; P1,

) ) _g PP Pzﬂi—mﬁj:
bi=> aby+o=Fi Bi — Bj " Bi — Bj P

Thus B# contains p; and p».

Conversely, if B contains p1 and py, then there is « € L such that p1 =afi+0 and p, =apj+o,
hence o = (p1 — P2)(Bi — /3]-)*1 € L. The uniqueness of g follows from the fact that such integers i, j
are unique.

In particular, g = g1 is the only element of G such that B# contains 8; and S, therefore, no
element except g = g1.o fixes the block B. So |B®| = |G| =q(q — 1)/k(k — 1).

Clearly, G is transitive on the block set B®. The number of flags is k x |[B¢| =q(q — 1)/(k — 1),
which is greater than |G|, so G is not flag-transitive on D. O

Lemma 2.2. Given a finite number of polynomials c1g + c11X + - - - 4 C1n, X", €20 + C21X + - - - 4+ Con, X2, . . .,
Cmo + Cm1X + « - + Cmn,, X™ in C[X], if ap + a1x + - - - + asx® is the product of those polynomials, then

S

m
> lajl < T J(Iciol + leinl + -+ Icing )

j=0 i=

—_

3. Proof of Theorem 1.1

In this section, we apply Proposition 2.1 to 2-(v, 6, 1) designs. Let g be a prime power with q =31
(mod 60), 6 a generating element of GF(q)*, M = (61°), and L = (63). In view of Proposition 2.1, we
find if there is a set B ={B1, B2,..., Bs} such that B~ is a system of representatives of the cosets
of M in GF(gq)*, then from G = GF(q)™ x L a 2-(q, 6, 1) design on which G is block-transitive, but not
flag-transitive can be constructed.

We show that for large g, such a subset B always exists. The idea is to find an element 8 € GF(q)*
such that B ={0, 1, B8, B2, 3, B*} satisfies the requirement. Now B~ ={1,8,..., B4 U{B/ — 1 |0 <
i < j <4}, the elements of B~ are listed as follows:

1 B-1 B2 -1 B3 -1 B4 —1

B BB-1) B(B*-1) BB -1)

B> BEB-1) B(B*-1) (3.1)
B BB-1

B.
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Lemma 3.1. Let B = (0,1, 8, 2, B>, B%). If B € GF(q)* satisfies the following conditions

B e MO UMG”,

BO(B—1)eM,

BB+ eM, (3.2)
BE(B*+B+1)eM,

BB +1)eM.

Then B~ is a system of representatives of the cosets of M in GF(q)*.

Proof. The cosets of M in GF(q)* are M®6J, where j=0,1,...,14.

If B € MO (similarly, 8 € MO~1), then (8 —1) € M6, B+ 1€ M64 B2+ 8+ 1e M, and
B2 +1eM6°.

Now the elements in the first column of (3.1) run over M6/ (j=0,1,...,4), the elements in
the second run over M@J (j =5,6,7,8), the elements in the third run over M#J (j =9, 10, 11), the
elements in the fourth are in M#'2 and M6'3 respectively, and finally, 8% — 1= (8 + 1)(8 — 1) x
B2+ eMo™ 0O

Intuition tells us that an element 8 satisfying (3.2) may exist if g is large enough. To prove this,
we need Weil’s theorem on character sums.

Proposition 3.1. (See [7, Theorem 5.41].) Let GF(r) be a finite field, and ¥ a multiplicative character of GF(r)
of order m > 1. Suppose that f € GF(r)[x] is a monic polynomial of positive degree, and that f is not a mth
power of a polynomial. Let d denote the number of distinct roots of f in its splitting field over GF(r). Then for
any element o € GF(r),

> W(af(X))‘ <@d-1r

xeGF(r)

Proof of Theorem 1.1. Let 2 = {8 | B € GF(q) satisfies (3.2)}. It suffices to show that if q is large
enough then [£2] > 0.

Let a = e27i/15 be a 15th root of unity, for any integer j, define ¥ (64) = aJ, since g =31 (mod 60),
¥ is a character of order 15 on GF(q), and so is ¥ ~! = ¢, As usual, define ¥ (0) =0, ¥°(0) =1.

Let f1(x) =x10(x—1), fL,x) =x"T(x+1), f30) =x8x%+x+1), and f4(x) =x10(x%+1).

For j € {1, 2, 3, 4}, we have

15, if fi(x) e M,
1+ ¥ (fi0) +-+ W™ (fim) =11, if fj(0 =0, (3.3)
0, if fj(x)¢{0}UM.

Let

Fo=[2-v®-v>®)] ]_[ [P+ (0 —a —a]. (3.4)
je{2,4,5,8}

Notice that if x € M6/ where 3|j, then ¥3(x) =¥ 5(x) =1, and if x € MO/ U M6~/ then ¥(x) +
w~1(x) =al +a~J. Therefore,
F(0), ifxeMouUMe™!,
Fx)=1{ F0), ifx=0, (3.5)
0, otherwise.
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Write b = F(0). A direct calculation shows that

b=3 <2C052—7T—2C05m)%31.94.
) 15 15
je{2,4,5,8}
Let
4
Ho=F [[[1+@(f;0) +--+ ¥ (fi0)]. (3.6)
j=1

and consider the sum
S = Z Hx).
xeGF(q)
We partition the set GF(q) into three disjoint parts,

GF(q) =2 U 21U 2,

where 21 = {8 f;j(8) =0 for some j}, and 2, = GF(q) — (2 U £21). Clearly, £ = {0, =1, B | g* +
B4+1=0, or B2+1=0}, so 2] < 7.
Now

S=Y H®+ Y H®+ Y HEX. (3.7)

xef2 xXes Xes2

In view of (3.3) and (3.5), we know that if x € £2, then H(x) =b - 15%, while if x € £25, then H(x) = 0.
Therefore,

§=15%|R[+ Y HX). (3.8)
X

On the other hand, S can be calculated in another way,

S=HO)+ Y H®. (3.9)
xeGF(q)*
Now expand H(x) in (3.6). For simplicity, we denote ¥(x) by ¥, f1(x) by f1, and ¥ (f1(x)) by

¥ (f1), etc.
For x=£ 0, ¥ (x)¥ ~1(x) =1 holds. Hence F(x) can be written as

F(x)=co+ 1% () + ¥ (x) + -+ ca¥ " (0), (3.10)
and H(x) as
Ho=co+ Y. uiol(fpe™()v (v (fo=co+ Y. cj@(x fifFfsfi).
(j,l,m,s,t) (j,l,m,s,t)

then the sum in (3.9) becomes that
S=HO)+ > c+ Y. > ¥ (3.11)
xeGF(q)* (j.I,m,s,t) xeGF(q)*
where (j,l,m,s,t) runs over {0,1,..., 14)°> — {(0,0, 0,0, 0)}.
Equating (3.8) and (3.11), we get that

15%12=co@—D+HO) = Y Hx+ Y. Y U fff5fL)
X8 (j,I,m,s,t) xeGF(q)*
=co(@—1) + S1 + S2, (3.12)

where S1=H(0) — > yco, H(X), and S = 3" | ms.t) 2xecrigy< [ ]-
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Notice that |¥ (x)| < 1, so from (3.6) follows that |H(x)| < 4°15%, hence

1511 = ‘H<O>— > H®

X

<(1211+1)4° 15 < 8. 4°15% (3.13)

By applying Lemma 2.2 to (3.4), the coefficients in (3.10) satisfy that

lcjl <4°, j=0,1,...,14.
co must be calculated carefully (notice cg # F(0)), it follows from (3.4) that
co=4+2[2+ (@ +a)(a* + a’z)][Z + (a* +a ) (a® + a’s)]
+4(a® +a +a* +a?)(a* +a* +a® +a78)
4 T Vb1 4 T Vb1
=448(1—-cos— J{14+2cos—cos— ) —8{2cos — — 1 || cos — + cos —
15 15 15 15 15 15
A 4.258. (3.14)
For (j,I,m,s,t) €{0,1,...,14})°> — {(0,0,0,0,0)},
Y. GWWARRR) = Y W ARSR).
xeGF(q)* x€GF(q)
since f1(0) =---= f4(0) =0. Now xffl’ fé“f;fj has at most 7 distinct roots in any extension field of

GF(q). Applying Proposition 3.1, we have

DR ACH R

xeGF(q)

<Iejl(7=1)Vg<6-4°/3,

and hence

[S2] = <6-4°15°/q. (3.15)

Y D GYWAGSL)

(j,I,m,s,t) xeGF(q)*
From (3.12)-(3.15), we get

15%h12| > co(@—1) —8-4°15* — 6. 4°15° /g > co(q — 1) — 6 - 4°15° (/T + 1)

. 5
=co(ﬁ+1)~(ﬁ—1_6 60 ) (3.16)

Co

Therefore, if ¢ > (1 +6-60°/cg)? ~ 1.201 x 108, then 15%b|£2| > 0, hence |£2| > 0, which implies
that there is g € GF(q)* satisfying (3.2), as required. O

4. Construct 2-(q, 6, 1) designs for small q

In view of Proposition 2.1, we see that if B = {81, B2, ..., B} satisfies the proposition, then so does
B for any g € G =GF(q)* x L, and so does the set {Bx(1), Br(2),-- -+ Br(k} for any permutation 7 on
{1,2,...,k}. This is from the fact that B~ U (—B~) is a system of representatives of the cosets of L
and the fact that the map x — x+ o does not change B~. So it is reasonable to assume that maybe a
set B={0,1,...} satisfies the proposition.

In Theorem 1.1 the lower bound for q is coarse, there are two reasons, one is that the coefficients
are estimated coarsely, another is that if a design D exists the block B ={0,1,...} in it is unique, in
order to use Weil's theorem, B is assumed to be {0,1, 8, ..., 8%}, the choice of B is limited, maybe
such a B does not exist if g is too small.

Write B=1{0,1,0™ 0™ M3 gM4} B~ ={9™ 0" .. . 0™5}, where 6 generates GF(q)*. By Propo-
sition 2.1, constructing a 2-(q, 6, 1) design in that way is to find a block B such that {ny,ny,...,ns}
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Table 1

Block-transitive 2-(q, 6, 1) designs G = GF(q) x (6°°), g < 5000
q Primitive root 6 ={0,1}uU

31 3 {3,8,12,18}

151 6 {12, 33, 83,90}

211% 2 {107x, 55, 188, 71}

271 6 {3,7,37,157}

331 3 {4, 14,262,281}

571 3 {3, 10, 106, 160}

631 3 {242+, 512, 228, 279}
691 3 {132+, 149, 320, 89}

751 3 {3,7, 148, 280}

811 3 {3,9,341, 504}

991 6 (3,8, 143,552}

1051 7 {82,152, 198, 486}

171 2 {8,742,804, 1131}
1231 3 {244,448, 984, 51}
1291 2 {73,177, 109, 986}

1471 6 {148,739, 1096, 1331}
1531 2 {225+, 102, 1516, 1218}
1831x 3 {571x, 123, 655, 481}
1951 3 {313,731, 1119, 1833}
2011 3 {1488x, 33, 840, 1089}
2131 2 {1785x, 380, 642, 1623}
2251 7 {532,1107, 1547, 2161}
2311 3 {395,732, 1145, 2035}
2371 2 {307, 1269, 1519, 2303}
2551 6 {1477, 424, 1253, 1206}
2671 7 {1213, 1430, 1585, 2273}
2731% 3 {101x, 2008, 714, 1108}
2791 6 {800x, 861, 2214, 1706}
2851 2 {879,2213, 2334, 2743}
2971 10 {553, 1554, 1724, 2657}
3271x 3 {2088+, 2772, 1537, 405}
3331 3 {208, 1693, 1993, 2980}
3391 3 {1456+, 561, 2976, 2749}
3511 7 {412, 654, 2391, 3439}
3571 2 {611,618, 1258, 3014}
3631 15 {693%, 957, 2359, 837}
3691 2 {1424%, 1417, 2522, 3676}
3931 2 {688,991, 2640, 3738}
40515 10 {137x, 2565, 3019, 401}
411 12 {198, 2362, 3202, 3796}
4231 3 {1361, 3374, 1379, 2486}
4591 11 {40+, 1600, 4317, 2813}
4651 3 {198, 1336, 1716, 2186}
4831 3 {3049+, 1557, 3251, 3918}
4951 6 {4211%,2990, 497, 3545}

221

is a complete set of residues modulo 15. When ¢ is small we may use this idea to write a simple

program to search such a block B
congruence classes modulo 15 until finding a required set {nq,ny,...,

we have written a C-program to do this work.

It turns out that each prime power g less than 5000 satisfying ¢ =31 (mod 60) is a prime, and
a primitive root # can be found in [4]. For each such q we give a block B = {0, 1, 81, B2, 83, B4} in
Table 1. If B=1{0, 1, 8, 82, 3, p*} for some g, then the corresponding elements q and g are attached
a sign x, respectively. Also we mention that a 2-(31,6, 1) design is the projective plane of order 5,
and G =GF(31)* x 1 is a Singer group.

={0,1,0™,9™2 0™ 9M4}: let my, my, m3, my run through distinct
nis}. For g < 5000 and q = 313,
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Also we obtained a design for g = 313. Let 6 be a root of the polynomial x> — x> — x — 24 over
GF(31), then GF(31%) = GF(31)(0). It is shown by our C-program that 6 is a primitive root of GF(313)*.
Let B={0,1,6, 602,03, 014722} then we find

6—-1= 97390 92 1= 92540 03 1= 03578 914722 1= 94739
92 —_0= 97391 93 —0= 02541 914722 —0= 97693 93 _ 92 — 07392
914772 _ 92 — 918744 914772 _ 93 — 911869.

It is not hard to verify that the elements of B~ run through the cosets of (61°) in GF(313)*. Therefore,
there is also an example for q =313,

Remark 1. Camina et al. commented in [2] that there are examples (G, D) where D is a 2-(v,4,1)
design with v =13, 37,61, 109, 157 or 181, G < AutD is soluble and is block-transitive, but not flag-
transitive on D. J.F. Lin in his thesis (see [8]) proved that there are infinitely many examples (G, D).

Remark 2. We have shown that for each large g, there is a design satisfying Theorem 1.1, and present
examples for small q. A question arises: Is there such a 2-(q,6,1) design for every prime power
g =31 (mod 60)?

Remark 3. Each design we construct has a block-transitive automorphism group G < AGL(1, q), but
its full automorphism group might be much bigger, for example, the 2-(31, 6, 1) design constructed
in Section 4 is the projective plane PG(2, 5), its full automorphism is PGL(3,5). Thus the following
question is of importance: What is Aut(D) for those designs D?
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