期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:254
Global wave-front sets of Banach, Frechet and modulation space types, and pseudo-differential operators
Article
Coriasco, Sandro1  Johansson, Karoline2  Toft, Joachim2 
[1] Univ Turin, Dipartimento Matemat, I-10124 Turin, Italy
[2] Linnaeus Univ, Dept Comp Sci Phys & Math, Vaxjo, Sweden
关键词: Wave front;    Fourier;    Banach space;    Modulation space;    Micro-local;    Pseudo-differential;   
DOI  :  10.1016/j.jde.2013.01.014
来源: Elsevier
PDF
【 摘 要 】

We introduce global wave-front sets WFB(f), f is an element of'(R-d), with respect to suitable Banach or Frechet spaces B. An important special case is given by the modulation spaces B = M(omega,B), where omega is an appropriate weight function and B is a translation invariant Banach function space. We show that the standard properties for known notions of wave-front set extend to WFB(f). In particular, we prove that micro-locality and micro-ellipticity hold for a class of globally defined pseudo-differential operators Op(t)(alpha), acting continuously on the involved spaces. (C) 2013 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2013_01_014.pdf 432KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次