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special case is given by the modulation spaces B = M(ω,B),
where ω is an appropriate weight function and B is a translation
invariant Banach function space. We show that the standard
properties for known notions of wave-front set extend to WFB( f ).
In particular, we prove that micro-locality and micro-ellipticity
hold for a class of globally defined pseudo-differential operators
Opt(a), acting continuously on the involved spaces.
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0. Introduction

An important question for a linear operator T is whether T possesses “convenient” invertibility
properties. For example, if T = 1 − �, where � is the Laplace operator, and f ∈ S ′(Rd) fulfills

T f = g, (0.1)
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for some given g ∈ S (Rd), then it follows by Fourier’s inversion formula that f ∈ S (Rd). Similar facts
are true when 1 − � is replaced by any partial differential operator whose symbol satisfies certain
hypoellipticity conditions. Furthermore, if in addition the coefficients are constant, then f can easily
be computed by a similar Fourier argument as for 1 − �.

In most situations, T fails to be (globally) hypoelliptic, and the involved functions or distributions
f and g do not belong to S (Rd). Therefore the target and image spaces of T need to be replaced by
appropriate Banach or Fréchet spaces B and C , respectively.

From now on we assume that T is a pseudo-differential operator with symbols belonging to an
extended family of SG symbols. (See Sections 1, 2 and 5 for strict definitions.) We remark that the SG-
calculus of pseudo-differential operators was introduced independently by C. Parenti and H.O. Cordes
in the ’70s, see, e.g., [2,3,23], and that several important global problems in science and technology
can be formulated in terms of such operators. For example, any linear partial differential operator
with constant coefficients, Klein–Gordon’s equation, and Schrödinger equations for different atoms
can be formulated within the framework of the SG-calculus.

The assumptions on B and C in (0.1) are few, and are specified in Section 1. For example B and
C can be modulation spaces, a family of Banach spaces of functions and tempered distributions, in-
troduced by H.G. Feichtinger in [7], and developed further and generalized by H.G. Feichtinger and
K.H. Gröchenig in [10]. (See [10,12] for general facts and [9] for a modern approach to modulation
spaces.) We remark that the family of modulation spaces is broad in the sense that it contains the
Sobolev spaces H2

s and the Sobolev–Kato spaces H2
s,t . (Cf. Remark 1.6.) Since the union and intersec-

tion of the Sobolev–Kato spaces equals S ′ and S , respectively, similar facts are true for modulation
spaces.

We recall that T is continuous on S and on S ′ , and if B is a modulation space, then it is not
complicated to find the smallest modulation space C such that T is continuous from B to C , in view
of [13,28]. Furthermore, if in addition T satisfies an appropriate hypoellipticity condition and g in
(0.1) belongs to C , then it follows that f belongs to B. Hence for such choices of T , B and C it is not
complicated to obtain satisfactory answers on the following questions:

Q1. Is T extendable to a continuous operator from B to C?
Q2. Let g ∈ C in (0.1). Is it true that f ∈ B?

In Sections 2 and 5 we introduce global wave-front sets WFB( f ) of the distribution f , with respect
to the Banach or Fréchet space B, and establish basic mapping properties of such wave-front sets. The
set WFB( f ) is the union of three components, WFm

B( f ), m = 1,2,3. The first component, WF1
B( f ),

is the local component which agrees with WFB( f ) in [4], and informs about singular points of f
with respect to B, and the directions where these singularities propagate. The components WFm

B( f ),
m = 2,3, inform where at infinity, the growths and oscillations respectively for f are strong enough
such that f fails to belong to B. We note that if B = S , then the components WFm

B( f ), m = 1,2,3,

agree with WFψ

S ( f ), WFe
S ( f ) and WFψe

S ( f ), respectively, in [6].
We establish mapping properties for the wave-front sets, and for example prove that if T is con-

tinuous on S ′ and restricts to a continuous map from B to C , then

WFC(g) ⊆ WFB( f ) ⊆ WFC(g) ∪ Char(T ), g = T f , (0.2)

for the global wave-front sets, and similarly for their components. That is, WFC(g) is contained in
WFB( f ), and opposite inclusion is obtained by including Char(T ), the set of characteristic points
of T . In particular, by using the equivalence

WF1
B( f ) = ∅ ⇐⇒ f ∈ Bloc, (0.3)

proved in [4], in combination with

WFB( f ) = ∅ ⇐⇒ f ∈ B, (0.4)
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proved in Section 2, it follows that wave-front sets can be used to give detailed answers (locally and
globally) on the questions Q1 and Q2, here above. Here (0.4) is proved in the case B = S in [6].
Furthermore, we may use our results to obtain answers on the following questions:

Q3. Assume that f in (0.1) fails to belong to B in some way. In what ways might g fail to belong
to C?

Q4. Assume that g in (0.1) fails to belong to C in some way. In what ways might f fail to belong
to B?

It is of fundamental interests to obtain detailed answers on such questions. In Section 4 we present
related examples, where it is shown how the results can be applied to establish properties of solu-
tions to certain partial differential equations. Here we remark that the local components in (0.2) also
include improvements concerning the set Char(T ). In fact, let Char′(T ) be the set of characteristic
points of T as it is defined in [16, Chapter XVIII]. Then Char(T ) ⊆ Char′(T ), where strict inclusion
might occur. (Cf. Remark 2.4 in [4] and Remark 1.4 in [24].)

More generally, in order to get more detailed information on the links between f and g in (0.1),
we introduce in Section 5 global wave-front sets with respect to sequences of appropriate Banach or
Fréchet spaces, and prove that the usual properties (0.2)–(0.4) for such wave-front sets, still hold.
For example, from these investigations, it follows that (0.2)–(0.4) holds when B = C equals S (Rd),
Q 0(Rd) or Q (Rd), where

Q 0
(
Rd) ≡ {

f ∈ C∞(
Rd):

∣∣∂α f (x)
∣∣ � 〈x〉N for some N and every α ∈ Zd

}

and

Q
(
Rd) ≡ {

f ∈ C∞(
Rd):

∣∣∂α f (x)
∣∣ � 〈x〉Nα , where Nα depends on α ∈ Zd}

(cf. Remark 5.10). Here and in what follows we write A � B when A � cB for a suitable constant
c > 0. In particular, if Char(T ) = ∅ (for example when T = 1 − �), f , g ∈ S ′ and (0.1) holds, then T f
belongs to Q 0, if and only if f belongs to Q 0. The same is true if Q 0 is replaced by Q or S .

We remark that if B equals S or H2
s,t , then WFB( f ) agree with the wave-front sets of f with

respect to S and H2
s,t , respectively, given in [6] and [22], see also [17]. Consequently, we recover the

micro-locality and micro-ellipticity properties that hold for wave-front sets of Sobolev type introduced
by Hörmander [16], and classical wave-front sets with respect to smoothness (cf. Sections 8.1 and 8.2
in [15]), as well as for wave-front sets of Banach function type in [4], and wave-front sets with respect
to S and H2

s1,s2
in [6,22]. In particular, our approach links the “local” analysis carried out in [4,24],

with the “global” analogue treated, e.g., in [6].
The paper is organized as follows. In Section 1 we recall the definition and basic properties of

pseudo-differential operators, translation invariant Banach function spaces and modulation spaces.
Here we also define three types of sets of characteristic points and show some properties for them.
One of these characteristic sets coincides with the one defined in [4].

In Section 2 we define the global wave-front sets of B-type WFB( f ), and its components WFm
B( f ).

Furthermore, we prove that WF1
M(ω,B)

( f ) and WF1
FB0(ω)

( f ) coincide with the wave-front sets de-
fined in [4], when M(ω,B) is locally the same as the Fourier BF-space FB0(ω). The remaining part
of the section is devoted to the proof of a relation between the wave-front sets of B-type and the
sets of characteristic points. Here we also prove (0.4).

Sections 3 and 5 are devoted to mapping properties for pseudo-differential operators in the context
of these wave-front sets. Especially we prove (0.2) for appropriate spaces. Here the most general
situation is given in Section 5, involving wave-front sets with respect to sequences of spaces. Examples
of applications of our results are given in Section 4 and at the end of Section 5. Finally, in Appendix A
we prove some properties for the sets of characteristic points stated in Section 1.
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1. Preliminaries

In what follows we let Γ denote an open cone in Rd \ 0. (The vertices of the cones are always
origin.) If ξ ∈ Rd \ 0 is fixed, then an open cone which contains ξ is sometimes denoted by Γξ .

1.1. Weight functions

Let ω and v be positive measurable functions on Rd . Then ω is called v-moderate if

ω(x + y) � ω(x)v(y). (1.1)

If v in (1.1) can be chosen as a polynomial, then ω is called a function or weight of polynomial type.
We let P(Rd) be the set of all polynomial type functions on Rd . If ω(x, ξ) ∈ P(R2d) is constant
with respect to the x-variable or the ξ -variable, then we sometimes write ω(ξ), respectively ω(x),
instead of ω(x, ξ). In this case we consider ω as an element in P(R2d) or in P(Rd) depending on
the situation. We say that v is submultiplicative if (1.1) holds for ω = v . For convenience we assume
that all submultiplicative weights are even, and we always let v and v j stand for submultiplicative
weights, if nothing else is stated.

Without loss of generality we may assume that every ω ∈ P(Rd) is smooth and satisfies the
ellipticity condition ∂αω/ω ∈ L∞ . In fact, by Lemma 1.2 in [27] it follows that for each ω ∈ P(Rd),
there is a smooth and elliptic ω0 ∈ P(Rd) which is equivalent to ω in the sense

ω � ω0. (1.2)

Here and in what follows we use the notation A � B when A � B � A.
We need some more conditions on the involved weights. More precisely let r,ρ � 0. Then

Pr,ρ(R2d) is the set of all ω(x, ξ) in P(R2d) ∩ C∞(R2d) such that

〈x〉r|α|〈ξ〉ρ|β| ∂
α
x ∂

β
ξ ω(x, ξ)

ω(x, ξ)
∈ L∞(

R2d),
for every multi-indices α and β . Note that Pr,ρ is different here compared to [4], and that there are
elements in P(R2d) which have no equivalent elements in Pr,ρ(R2d). On the other hand, if s, t ∈ R
and r,ρ ∈ [0,1], then Pr,ρ(R2d) contains all weights of the form ω(x, ξ) = 〈x〉t〈ξ〉s , which are one of
the most common type of weights in the applications.

1.2. Translation invariant Banach function spaces

Next we define Banach function spaces (BF-spaces) and present some useful properties.

Definition 1.1. Let B ⊆ L1
loc(Rd), and let v ∈ P(Rd) be submultiplicative. Then B is called a (transla-

tion) invariant BF-space on Rd (with respect to v), if the following is true:

(1) S (Rd) ⊆ B ⊆ S ′(Rd) (continuous embeddings);
(2) if x ∈ Rd and f ∈ B, then f (· − x) ∈ B, and

∥∥ f (· − x)
∥∥

B
� v(x)‖ f ‖B; (1.3)

(3) if f , g ∈ L1
loc(Rd) satisfy g ∈ B and | f (x)| � |g(x)| almost everywhere, then f ∈ B and

‖ f ‖B � ‖g‖B;
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(4) if f ∈ B and ϕ ∈ C∞
0 (Rd), then f ∗ ϕ ∈ B, and

‖ f ∗ ϕ‖B � ‖ϕ‖L1
(v)

‖ f ‖B. (1.4)

The property (3) in Definition 1.1 is associated with solidity in function space theory. Consequently,
the translation invariant BF-spaces here are also solid BF-spaces. Since C∞

0 is dense in L1
(v) , it follows

from (1.4) that the convolution product extends uniquely to a continuous multiplication from B ×
L1
(v)(Rd) to B.

Assume that B is a translation invariant BF-space. If f ∈ B and h ∈ L∞ , then it follows from (3)
in Definition 1.1 that f · h ∈ B and

‖ f · h‖B � ‖ f ‖B‖h‖L∞ . (1.5)

Also let ω ∈ P(Rd). Then the Fourier BF-space FB(ω) is the set of all f ∈ S ′(Rd) such that
ξ �→ f̂ (ξ)ω(ξ) belongs to B. Here and in what follows, F is the Fourier transform on S ′(Rd), which
takes the form

(F f )(ξ) = f̂ (ξ) ≡ (2π)−d/2
∫

Rd

f (x)e−i〈x,ξ 〉 dx

when f ∈ L1(Rd). It follows that FB(ω) is a Banach space under the norm

‖ f ‖FB(ω) ≡ ‖ f̂ ω‖B. (1.6)

Remark 1.2. Definition 1.1 is not the standard definition of Banach function spaces, and there are
several approaches to the theory of such spaces. We refer to [8,21] and the references therein for
more facts about such spaces.

Remark 1.3. In several situations it is convenient to permit an x dependency for the weight ω in
the definition of Fourier BF-spaces. More precisely, for each ω(x, ξ) ∈ P(R2d) and each translation
invariant BF-space B on Rd , we let FB(ω) be the set of all f ∈ S ′(Rd) such that

‖ f ‖FB(ω) = ‖ f ‖FB(ω),x ≡ ∥∥ f̂ ω(x, ·)∥∥
B

is finite. Since ω is v-moderate for some v ∈ P(R2d) it follows that different choices of x give rise
to equivalent norms. Therefore the condition ‖ f ‖FB(ω) < ∞ is independent of x, and it follows that
FB(ω) is independent of x although ‖ · ‖FB(ω) might depend on x.

1.3. Modulation spaces

Let φ ∈ S (Rd). Then the short-time Fourier transform of f ∈ S (Rd) with respect to (the window
function) φ is defined by

Vφ f (x, ξ) = (2π)−d/2
∫

Rd

f (y)φ(y − x)e−i〈y,ξ 〉 dy. (1.7)

More generally, the short-time Fourier transform of f ∈ S ′(Rd) with respect to φ ∈ S ′(Rd) is defined
by

(Vφ f ) = F2 F , where F (x, y) = ( f ⊗ φ)(y, y − x). (1.7)′
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Here F2 F is the partial Fourier transform of F (x, y) ∈ S ′(R2d) with respect to the y-variable. The
definition (1.7)′ makes sense, since the mappings F2 and F �→ S∗ F = F ◦ S with S(x, y) = (y, y − x)
are homeomorphisms on S ′(R2d). It is obvious that (1.7) and (1.7)′ agree when f , φ ∈ S (Rd). We
refer to [11,12] for more facts about the short-time Fourier transform.

We mainly follow [9] when defining modulation spaces. Let B be a translation invariant BF-
space on R2d with respect to v ∈ P(R2d), φ ∈ S (Rd) \ 0 and let ω ∈ P(R2d) be such that ω is
v-moderate. The modulation space M(ω,B) consists of all f ∈ S ′(Rd) such that Vφ f · ω ∈ B. We
note that M(ω,B) is a Banach space with the norm

‖ f ‖M(ω,B) ≡ ‖Vφ f ω‖B (1.8)

(cf. [10]).

Remark 1.4. Assume that p,q ∈ [1,∞], and let L p,q
1 (R2d) and L p,q

2 (R2d) be the sets of all F ∈ L1
loc(R2d)

such that

‖F‖L p,q
1

≡
(∫ (∫ ∣∣F (x, ξ)

∣∣p
dx

)q/p

dξ

)1/q

< ∞

and

‖F‖L p,q
2

≡
(∫ (∫ ∣∣F (x, ξ)

∣∣q
dξ

)p/q

dx

)1/p

< ∞.

Then M(ω, L p,q
1 (R2d)) is equal to the classical modulation space M p,q

(ω)(Rd), and M(ω, L p,q
2 (R2d)) is

equal to the space W p,q
(ω)(Rd), related to Wiener-amalgam spaces (cf. [7,9,10,12]).

For notational convenience we set M p
(ω) = M p,p

(ω) = W p,p
(ω) . Furthermore, if ω = 1, then we write

M p,q , M p and W p,q instead of M p,q
(ω) , M p

(ω) and W p,q
(ω) respectively.

In the following proposition we list some important properties for modulation spaces. We refer to
[12] for the proof.

Proposition 1.5. Let ω, v0, v ∈ P(R2d) be such that v and v0 are submultiplicative, and ω is v-moderate.
Also let B be a translation invariant BF-space on R2d with respect to v0 and f ∈ S ′(Rd). Then the following
is true:

(1) if φ ∈ M1
(v0 v)

(Rd) \ 0, then f ∈ M(ω,B) if and only if Vφ f · ω ∈ B. Furthermore, (1.8) defines a norm
on M(ω,B), and different choices of φ give rise to equivalent norms;

(2) S (Rd) ⊆ M1
(v0 v)(Rd) ⊆ M(ω,B) ⊆ M∞

(1/(v0 v))(Rd) ⊆ S ′(Rd).

Proposition 1.5(1) allows us to be rather vague about the choice of φ ∈ M1
(v0 v)

\ 0 in (1.8). For
example, if C > 0 is a constant and S0 is a subset of S ′ , then ‖a‖M(ω,B) � C for every a ∈ S0, means
that the inequality holds for some choice of φ ∈ M1

(v0 v) \ 0 and every a ∈ S0. Evidently, for any other

choice of φ ∈ M1
(v0 v) \ 0, a similar inequality is true although C may have to be replaced by a larger

constant, if necessary.
In what follows we let σs and σs,t be the weights

σs(x, ξ) = 〈x, ξ〉s and σs,t(x, ξ) = 〈x〉t〈ξ〉s, x, ξ ∈ Rd. (1.9)
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Remark 1.6. Several important spaces agree with certain modulation spaces. In fact, let s, t ∈ R. Then
M2

(σs,t )
(Rd) is equal to the weighted Sobolev space (or Sobolev–Kato space) H2

s,t(Rd) in [6,22], the set

of all f ∈ S ′(Rd) such that 〈x〉t〈D〉s f ∈ L2. In particular, M2
(σs,0) and M2

(σ0,t )
are equal to H2

s and L2
t ,

respectively.
Furthermore, M2

(σs)
(Rd) is equal to the Shubin–Sobolev space of order s. (Cf. e.g. [20].)

We recall that Fourier BF-spaces and modulation spaces are locally the same. In fact, let ϕ ∈
S (Rd) \ 0, B be a translation invariant BF-space on R2d , ω ∈ P(R2d) and set ω0(ξ) = ω(x0, ξ) for
some fixed x0 ∈ Rd . Then

B0 ≡ {
f ∈ S ′(Rd); ϕ ⊗ f ∈ B

}
(1.10)

is a translation invariant BF-space on Rd under the norm ‖ f ‖B0 ≡ ‖ϕ ⊗ f ‖B . The space B0 is inde-
pendent of ϕ ∈ S (Rd) \ 0, and different choices of ϕ give rise to equivalent norms. Furthermore

M(ω,B) ∩ E ′(Rd) = FB0(ω0) ∩ E ′(Rd) (1.11)

(cf. [4,26]).

1.4. Pseudo-differential operators and symbol classes

Next we recall some facts in Chapter XVIII in [16] concerning pseudo-differential operators. Let a ∈
S (R2d), and t ∈ R be fixed. Then the pseudo-differential operator Opt(a) is the linear and continuous
operator on S (Rd) defined by the formula

(
Opt(a) f

)
(x) = (2π)−d

∫ ∫
a
(
(1 − t)x + ty, ξ

)
f (y)ei〈x−y,ξ 〉 dy dξ. (1.12)

For general a ∈ S ′(R2d), the pseudo-differential operator Opt(a) is defined as the continuous operator
from S (Rd) to S ′(Rd) with distribution kernel

Kt,a(x, y) = (2π)−d/2(F−1
2 a

)(
(1 − t)x + ty, x − y

)
. (1.13)

This definition makes sense, since F2 and the map

F �→ F ◦ St with St(x, y) = (
(1 − t)x + ty, x − y

)

are homeomorphisms on S ′(R2d). We also note that the latter definition of Opt(a) agrees with the
operator in (1.12) when a ∈ S (R2d).

If t = 0, then Opt(a) is the Kohn–Nirenberg representation Op(a) = a(x, D), and if t = 1/2, then
Opt(a) is the Weyl quantization.

Let a ∈ S ′(R2d) and s, t ∈ R. Then there is a unique b ∈ S ′(R2d) such that Ops(a) = Opt(b). By
straightforward applications of Fourier’s inversion formula, it follows that

Ops(a) = Opt(b) ⇐⇒ b(x, ξ) = ei(t−s)〈Dx,Dξ 〉a(x, ξ) (1.14)

(cf. Section 18.5 in [16]).
Next we discuss our symbol classes. Let m,μ, r,ρ ∈ R be fixed. Then SGm,μ

r,ρ (R2d) is the set of all
a ∈ C∞(R2d) such that

∣∣Dα
x Dβ

ξ a(x, ξ)
∣∣ � 〈x〉m−r|α|〈ξ〉μ−ρ|β|,

for all multi-indices α and β . Usually we assume that r,ρ � 0 and ρ + r > 0.
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More generally, assume that ω ∈ Pr,ρ(R2d). Then SG(ω)
r,ρ (R2d) consists of all a ∈ C∞(R2d) such that

∣∣Dα
x Dβ

ξ a(x, ξ)
∣∣ � ω(x, ξ)〈x〉−r|α|〈ξ〉−ρ|β|, x, ξ ∈ Rd, (1.15)

for all multi-indices α and β . We note that

SG(ω)
r,ρ

(
R2d) = S(ω, gr,ρ), (1.16)

when g = gr,ρ is the Riemannian metric on R2d , defined by the formula

(gr,ρ)(y,η)(x, ξ) = 〈y〉−2r |x|2 + 〈η〉−2ρ |ξ |2 (1.17)

(cf. Sections 18.4–18.6 in [16]). Furthermore, SG(ω)
r,ρ = SGm,μ

r,ρ when ω(x, ξ) = 〈x〉m〈ξ〉μ .

The following result shows that pseudo-differential operators with symbols in SG(ω)
r,ρ behave well.

Proposition 1.7. Let B be a translation invariant BF-space on R2d, s, t ∈ R, r,ρ � 0, ω ∈ P(R2d), ω0 ∈
Pr,ρ(R2d) and let a,b ∈ S ′(R2d) be such that Ops(a) = Opt(b). Then the following is true:

(1) a ∈ SG(ω0)
r,ρ (R2d) if and only if b ∈ SG(ω0)

r,ρ (R2d), and then

a − b ∈ SG
(ω0/σρ,r)
r,ρ

(
R2d);

(2) if a ∈ SG(ω0)
r,ρ (R2d), then Opt(a) is continuous on S (Rd) and extends uniquely to a continuous operator

on S ′(Rd);
(3) if a ∈ SG(ω0)

r,ρ (R2d), then Opt(a) is continuous from M(ω,B) to M(ω/ω0,B);

(4) there exist a ∈ SG(ω0)
r,ρ (R2d) and b ∈ SG(1/ω0)

r,ρ (R2d) such that for every choice of ω ∈ P(R2d) and every

translation invariant BF-space B on R2d, the mappings

Opt(a) : S
(
Rd) → S

(
Rd), Opt(a) : S ′(Rd) → S ′(Rd) and

Opt(a) : M(ω,B) → M(ω/ω0,B)

are continuous bijections with inverses Opt(b).

Proof. From the assumptions it follows that gr,ρ in (1.17) is slowly varying, σ -temperate and satis-
fies gr,ρ � gσ

r,ρ , and that ω is gr,ρ -continuous and (σ , gr,ρ )-temperate (see Sections 18.4–18.6 in [16]
for definitions). The assertions (1) and (2) are now consequences of Proposition 18.5.10 and Theo-
rem 18.6.2 in [16], and (1.16).

Finally, (3) and (4) follow immediately from [28, Theorem 3.2] and [13, Theorem 2.1]. The proof is
complete. �

We remark that explicit bijections of the form in Proposition 1.7(4) can be found in [13, Section 3].
The following definition is motivated by Proposition 1.7(3) and (4).

Definition 1.8. Let r,ρ ∈ [0,1], t ∈ R, B be a topological vector space of distributions on Rd such that

S
(
Rd) ⊆ B ⊆ S ′(Rd)

with continuous embeddings. Then B is called SG-admissible (with respect to r, ρ and d) when Opt(a)

maps B continuously into itself, for every a ∈ SG0,0
r,ρ .
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If B and C are SG-admissible with respect to r, ρ and d, and ω0 ∈ Pr,ρ(R2d), then the pair (B,C)

is called SG-ordered (with respect to ω0), when the mappings

Opt(a) :B → C and Opt(b) :C → B

are continuous for every a ∈ SG(ω0)
r,ρ (R2d) and b ∈ SG(1/ω0)

r,ρ (R2d).

Remark 1.9. Let B, t , r, ρ , ω and ω0 be as in Proposition 1.7, and let B be SG-admissible with respect
to r, ρ and d. Then there is a unique SG-admissible C such that (B,C) is an SG-ordered pair with
respect to ω0.

In fact, let a be as in Proposition 1.7(4). Then C is the image of B under Opt(a). The details are
left for the reader.

In particular, S (Rd), S ′(Rd) and M(ω,B) are SG-admissible, and

(
S

(
Rd),S (

Rd)), (
S ′(Rd),S ′(Rd)) and

(
M(ω,B), M(ω/ω0,B)

)

are SG-ordered with respect to ω0.

If a ∈ SG(ω0)
r,ρ (R2d), then

∣∣a(x, ξ)
∣∣ � ω0(x, ξ).

On the other hand, a is invertible, in the sense that 1/a is a symbol in SG(1/ω0)
r,ρ (R2d), if and only if

ω0(x, ξ) �
∣∣a(x, ξ)

∣∣. (1.18)

A slightly relaxed condition appears when (1.18) holds for all points (x, ξ), outside a compact set
K ⊆ R2d . In this case we say that a is elliptic (with respect to ω0).

In the following we discuss more local invertibility conditions for symbols in SG(ω0)
r,ρ (R2d) in terms

of sets of characteristic points of the involved symbols. We remark that our definition of such sets is
slightly different compared to [16, Definition 18.1.5] and [6] in view of Remark 1.16 below.

Definition 1.10. Let r,ρ � 0, ω0 ∈ Pr,ρ(R2d) and let a ∈ SG(ω0)
r,ρ (R2d).

(1) a is called locally or type-1 invertible with respect to ω0 at the point (x0, ξ0) ∈ Rd ×(Rd \0), if there
exist a neighborhood X of x0, an open conical neighborhood Γ of ξ0 and a positive constant R
such that (1.18) holds for x ∈ X , ξ ∈ Γ and |ξ | � R .

(2) a is called Fourier-locally or type-2 invertible with respect to ω0 at the point (x0, ξ0) ∈ (Rd \0)×Rd ,
if there exist an open conical neighborhood Γ of x0, a neighborhood X of ξ0 and a positive
constant R such that (1.18) holds for x ∈ Γ , |x| � R and ξ ∈ X .

(3) a is called oscillating or type-3 invertible with respect to ω0 at the point (x0, ξ0) ∈ (Rd \0)×(Rd \0),
if there exist open conical neighborhoods Γ1 of x0 and Γ2 of ξ0, and a positive constant R such
that (1.18) holds for x ∈ Γ1, |x| � R , ξ ∈ Γ2 and |ξ | � R .

If m ∈ {1,2,3} and a is not type-m invertible with respect to ω0 at (x0, ξ0), then (x0, ξ0) is called
type-m characteristic for a with respect to ω0. The set of type-m characteristic points for a with respect
to ω0 is denoted by Charm

(ω0)(a).

The (global) set of characteristic points (the characteristic set), for a symbol a ∈ SG(ω0)
r,ρ (R2d) with

respect to ω0, is

Char(a) = Char(ω0)(a) = Char1
(ω0)(a) ∪ Char2

(ω0)(a) ∪ Char3
(ω0)(a).
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Remark 1.11. In the case ω0 = 1 we exclude the phrase “with respect to ω0” in Definition 1.10. For
example, a ∈ SG0,0

r,ρ(R2d) is type-1 invertible at (x0, ξ0) ∈ Rd × (Rd \ 0) if (x0, ξ0) /∈ Char1
(ω0)(a) with

ω0 = 1. This means that there exist a neighborhood X of x0, an open conical neighborhood Γ of ξ0
and R > 0 such that (1.18) holds for ω0 = 1, x ∈ X and ξ ∈ Γ satisfies |ξ | � R .

In the next definition we introduce different classes of cutoff functions (see also Definition 1.9
in [4]).

Definition 1.12. Let X ⊆ Rd be open, Γ ⊆ Rd \ 0 be an open cone, x0 ∈ X and let ξ0 ∈ Γ .

(1) A smooth function ϕ on Rd is called a cutoff (function) with respect to x0 and X , if 0 � ϕ � 1,
ϕ ∈ C∞

0 (X) and ϕ = 1 in an open neighborhood of x0. The set of cutoffs with respect to x0 and X
is denoted by Cx0 (X) or Cx0 .

(2) A smooth function ψ on Rd is called a directional cutoff (function) with respect to ξ0 and Γ , if
there is a constant R > 0 and open conical neighborhood Γ1 ⊆ Γ of ξ0 such that the following is
true:
• 0 � ψ � 1 and suppψ ⊆ Γ ;
• ψ(tξ) = ψ(ξ) when t � 1 and |ξ | � R;
• ψ(ξ) = 1 when ξ ∈ Γ1 and |ξ | � R .
The set of directional cutoffs with respect to ξ0 and Γ is denoted by C dir

ξ0
(Γ ) or C dir

ξ0
.

Remark 1.13. Let X ⊆ Rd be open and Γ,Γ1,Γ2 ⊆ Rd \ 0 be open cones. Then the following is true:

(1) if x0 ∈ X , ξ0 ∈ Γ , ϕ ∈ Cx0 (X) and ψ ∈ C dir
ξ0

(Γ ), then c1 = ϕ ⊗ ψ belongs to SG0,0
1,1(R2d), and is

type-1 invertible at (x0, ξ0);
(2) if x0 ∈ Γ , ξ0 ∈ X , ψ ∈ C dir

x0
(Γ ) and ϕ ∈ Cξ0(X), then c2 = ψ ⊗ ϕ belongs to SG0,0

1,1(R2d), and is
type-2 invertible at (x0, ξ0);

(3) if x0 ∈ Γ1, ξ0 ∈ Γ2, ψ1 ∈ C dir
x0

(Γ1) and ψ2 ∈ C dir
ξ0

(Γ2), then c3 = ψ1 ⊗ ψ2 belongs to SG0,0
1,1(R2d),

and is type-3 invertible at (x0, ξ0).

In the following proposition we show that Opt(a) for t ∈ R satisfies convenient invertibility prop-
erties of the form

Opt(a)Opt(b) = Opt(c) + Opt(h), (1.19)

outside the set of characteristic points for a symbol a. Here Opt(b), Opt(c) and Opt(h) have the roles
of “local inverse”, “local identity” and smoothing operators respectively. From these propositions it
also follows that our sets of characteristic points in Definition 1.10 are related to those in [6,16].

Before stating the results we let Im and Ωm , m = 1,2,3, be the sets

I1 ≡ [0,1] × (0,1], I2 ≡ (0,1] × [0,1], I3 ≡ (0,1] × (0,1] = I1 ∩ I2,

and

Ω1 = Rd × (
Rd \ 0

)
, Ω2 = (

Rd \ 0
) × Rd,

Ω3 = (
Rd \ 0

) × (
Rd \ 0

)
, (1.20)

which will frequently appear.

Proposition 1.14. Let m ∈ {1,2,3}, (r,ρ) ∈ Im, ω0 ∈ Pr,ρ(R2d) and let a ∈ SG(ω0)
r,ρ (R2d). Also let Ωm be as

in (1.20), (x0, ξ0) ∈ Ωm, and let (r0,ρ0) be equal to (r,0), (0,ρ) and (r,ρ) when m is equal to 1, 2 and 3,
respectively. Then the following conditions are equivalent:
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(1) (x0, ξ0) /∈ Charm
(ω0)(a);

(2) there is an element c ∈ SG0,0
r,ρ which is type-m invertible at (x0, ξ0), and an element b ∈ SG(1/ω0)

r,ρ such that
ab = c;

(3) (1.19) holds for some c ∈ SG0,0
r,ρ which is type-m invertible at (x0, ξ0), and some elements h ∈ SG−r0,−ρ0

r,ρ

and b ∈ SG(1/ω0)
r,ρ ;

(4) (1.19) holds for some cm ∈ SG0,0
r,ρ in Remark 1.13 which is type-m invertible at (x0, ξ0), and some elements

h and b ∈ SG(1/ω0)
r,ρ , where h ∈ S when m ∈ {1,3} and h ∈ SG−∞,0 when m = 2.

Furthermore, if t = 0, then the supports of b and h can be chosen to be contained in X × Rd when m = 1,
in Γ × Rd when m = 2, and in Γ1 × Rd when m = 3.

Proposition 1.14 for m = 1,2 follows by the same arguments as in the proof of Proposition 2.3
in [4], and the case m = 3 follows by similar arguments. For completeness we give a proof of Propo-
sition 1.14 in the case m = 3 in Appendix A.

As a consequence of Proposition 1.14, we can show that the sets of characteristic points are invari-
ant under the choice of pseudo-differential calculus.

Proposition 1.15. Let m ∈ {1,2,3}, (r,ρ) ∈ Im, ω0 ∈ Pr,ρ(R2d), s, t ∈ R and let a,b ∈ SG(ω0)
r,ρ (R2d) be such

that Ops(a) = Opt(b). Then Charm
(ω0)(a) = Charm

(ω0)(b).

Proof. We may assume that s = 0. We only consider the case m = 3. The other cases follow by similar
arguments and are left for the reader. By [16, Proposition 18.5.10], it follows that b = a + h, where

h ∈ SG
(ω0/σρ,r)
r,ρ . (Cf. (1.9).) Then for each ε > 0 there is a constant R > 0 such that |h(x, ξ)| � εω0(x, ξ)

when |x| � R or |ξ | � R . This implies that (3) in Definition 1.10 is fulfilled for a, if and only if it is
fulfilled for b. This gives the result. �
Remark 1.16. Let ω0(x, ξ) = 〈ξ〉r , r ∈ R, and assume that a ∈ SGr,0

1,0(R2d) = SG(ω0)
1,0 (R2d) is polyhomoge-

neous with principal symbol ar ∈ SGr,0
1,0(R2d) (cf. Definition 18.1.5 in [16]). Also let Char′(a) be the set

of characteristic points of Op(a) in the classical sense (i.e., in the sense of Definition 18.1.25 in [16]).
Then

Char1
(ω0)(a) ⊆ Char′(a), (1.21)

where strict inclusion might appear in view of Remark 1.4 and Example 3.9 in [24].
By similar arguments it follows that the sets Char2

(ω0)(a) and Char3
(ω0)(a) are contained in corre-

sponding sets of characteristic points in [6].

2. Global wave-front sets

In this section we define global wave-front sets for temperate distributions with respect to Banach
or Fréchet spaces and establish some properties. The basic ideas behind these definitions can be found
in [6].

We start by introducing the complements of the wave-front sets. More precisely, let Ωm , m ∈
{1,2,3}, be given by (1.20), B be a Banach or Fréchet space such that S (Rd) ⊆ B ⊆ S ′(Rd), and let
f ∈ S ′(Rd). Then the point (x0, ξ0) ∈ Ωm is called type-m regular for f with respect to B, if

Op(cm) f ∈ B, (2.1)

for some cm in Remark 1.13. The set of all type-m regular points for f with respect to B, is denoted
by Θm

B ( f ).
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Definition 2.1. Let m ∈ {1,2,3}, Ωm be as in (1.20), and let B be a Banach or Fréchet space such that
S (Rd) ⊆ B ⊂ S ′(Rd):

(1) the type-m wave-front set of f ∈ S ′(Rd) with respect to B is the complement of Θm
B ( f ) in Ωm ,

and is denoted by WFm
B( f );

(2) the global wave-front set WFB( f ) ⊆ (Rd × Rd) \ 0 is the set

WFB( f ) ≡ WF1
B( f ) ∪ WF2

B( f ) ∪ WF3
B( f ).

The sets WF1
B( f ), WF2

B( f ) and WF3
B( f ) in Definition 2.1, are also called the local, Fourier-local and

oscillating wave-front set of f with respect to B.
From now on we assume that B in Definition 2.1 is SG-admissible, and recall that Sobolev–Kato

spaces and, more generally, modulation spaces, and S (Rd) are SG-admissible. (Cf. Definition 1.8, and
Remarks 1.6 and 1.9.)

Remark 2.2. In a similar way as in [6, Remark 2.3], we note that Definition 2.1 does not change if the
condition (2.1) with cm as in Remark 1.13, m = 1,2,3, is replaced by

ψ(D)(ϕ · f ) /∈ B, ϕ(D)(ψ · f ) /∈ B, and ψ2(D)(ψ1 · f ) /∈ B,

respectively (when B is SG-admissible).
We only prove the assertion in the case m = 1, leaving the verification for the other cases to the

reader. Let c(x, ξ) = ϕ(x)ψ(ξ) where ϕ ∈ Cx0 (Rd) and ψ ∈ C dir
ξ0

(Rd \ 0), and let c1 ∈ SG0,0
r,ρ be equal to

1 on supp c. Then it follows from the symbolic calculus that

Op(c1)Op(c) = Op(c)Op(c1) mod Op(S ) = Op(c) mod Op(S ). (2.2)

A combination of (2.2) and the facts that each pseudo-differential operator with symbol in SG0,0
r,ρ is

continuous on B now shows that (1) in Definition 2.1 does not depend on the order we apply the
operators. Here we have also used the fact that elements in Op(S (R2d)) map S ′(Rd) continuously
into S (Rd) ⊆ B.

Remark 2.3. Let X ⊆ Rd be open, B ⊆ D ′(X) with continuous embedding, and let Bloc be the set of
all f ∈ D ′(X) such that ϕ · f ∈ B for every ϕ ∈ C∞

0 (X). Then B is called local if B ⊆ Bloc.
If B ⊆ D ′(X) and f ∈ D ′(Rd), then the local wave-front set WF1

B( f ) of f with respect to B is
defined as the set of all (x0, ξ0) ∈ X × (Rd \ 0) such that ψ(D)(ϕ · f ) /∈ B for every ϕ ∈ Cx0 (X) and
every ψ ∈ C dir

ξ0
(Rd \0). By Remark 2.2 it follows that this definition agrees with Definition 2.1(1) when

B is SG-admissible and f ∈ S ′ .
Let B1,B2 ⊆ D ′(X) be local such that (B1)loc ⊆ (B2)loc and ψ(D) is continuous from B j ∩ E ′

to B j , j = 1,2, when ψ ∈ C dir. Then WF1
B2

( f ) ⊆ WF1
B1

( f ) when f ∈ D ′(X), by Definition 2.1 and
Remark 2.2.

Remark 2.4. Let f ∈ S ′(Rd), x0, ξ0 ∈ Rd \ 0, ψ j,1 ∈ C dir
x0

(Rd \ 0), ψ j,2 ∈ C dir
ξ0

(Rd \ 0) for j = 1,2 be such
that ψ1,k = 1 on suppψ2,k for k = 1,2. Also let B be SG-admissible with respect to r,ρ ∈ [0,1] and d.
If ψ1,1 · ψ1,2(D) f ∈ B, then ψ2,1 · ψ2,2(D) f ∈ B.

In fact, if c j = ψ j,1 ⊗ ψ j,2, then c1 = 1 on supp c2, and it follows from the symbolic calculus that
for some h ∈ S we have

ψ2,1 · ψ2,2(D) f = Op(c2) f = Op(c2)Op(c1) f + Op(h) f .

The assertion now follows from the fact that Op(c2) and Op(h) are continuous on B.
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The next proposition gives an alternative definition of the global wave-front set in terms of inter-
section of sets of characteristic points described in Section 1.

Proposition 2.5. Let m ∈ {1,2,3}, (r,ρ) ∈ Im, ω0 ∈ Pr,ρ(R2d), (B,C) be an SG-ordered pair with respect
to ω0 , f ∈ S ′(Rd), and let

Sω0,C = {
a ∈ SG(ω0)

r,ρ
(
R2d); Op(a) f ∈ C

}
.

Then

WFm
B( f ) =

⋂
a∈Sω0,C

Charm
(ω0)(a). (2.3)

Proof. Let b ∈ SG(1/ω0)
r,ρ and b1 ∈ SG(ω0)

r,ρ be chosen such that Proposition 1.7(4) is fulfilled after a is
replaced by b1. By Remark 1.9 it follows that Opt(b1) is continuous and bijective from B onto C , with
inverse Opt(b). Since

Op(b)Op(a) ∈ Op
(
SG(1)

r,ρ
) = Op

(
SG0,0

r,ρ

)

when a ∈ SG(ω0)
r,ρ , we may assume that ω0 = 1 and C = B.

In order to prove (2.3) for m = 1, we first assume that (x0, ξ0) /∈ WF1
B( f ). By Definition 2.1 there

exist ϕ ∈ Cx0 and ψ ∈ C dir
ξ0

such that a(x, ξ) ≡ ϕ(x)ψ(ξ) ∈ SG0,0
1,1 and Op(a) f ∈ B. Since (1.18) is ful-

filled with ω0 = 1, it follows that a is type-1 invertible at (x0, ξ0). Hence (x0, ξ0) /∈ Char1
(ω0)(a), and

we have proved that
⋂

Char1
(ω0)(a) ⊆ WF1

B( f ).

It remains to prove the opposite inclusion. Let a ∈ SG0,0
r,ρ be such that (x0, ξ0) /∈ Char1(a) and

Op(a) f ∈ B. By Proposition 1.14, there are ϕ ∈ Cx0 , ψ ∈ C dir
ξ0

, b ∈ SG0,0
r,ρ and h ∈ S such that

Op(ϕ ⊗ ψ) = Op(b)Op(a) + Op(h).

Since Op(a) f ∈ B, Op(b) is continuous on B, and Op(h) maps S ′ into S , it follows that ϕ ·(ψ(D) f ) =
Op(ϕ ⊗ ψ) f ∈ B. Hence (x0, ξ0) /∈ WF1

B( f ). This proves (2.3). By similar arguments we also get (2.3)
when m equals 2 or 3. The details are left for the reader, and the proof is complete. �

The next result describes the relation between “regularity with respect to B” of temperate distri-
butions and global wave-front sets:

Theorem 2.6. Let B be SG-admissible, and let f ∈ S ′(Rd). Then

f ∈ B ⇐⇒ WFB( f ) = ∅.

For the proof we need the following lemma:

Lemma 2.7. Let B be SG-admissible. Then the following is true:

(1) if WF1
B( f ) = ∅ (WF2

B( f ) = ∅), then for each bounded open set X ⊆ Rd, there exists a non-negative a ∈
SG0,0

1,1 such that a � 1 on X × Rd (Rd × X ) and Op(a) f ∈ B;

(2) if WF3
B( f ) = ∅, then for some bounded open sets X1, X2 ⊆ Rd such that 0 ∈ X1 and 0 ∈ X2 , there exists a

non-negative a ∈ SG0,0
1,1 such that a � 1 on (Rd \ X1) × (Rd \ X2) and Op(a) f ∈ B.
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Proof. We only prove (1) in the case of the local wave-front set. The other assertions follow by similar
arguments and are left for the reader.

The condition WF1
B( f ) = ∅ implies that for each (x, ξ) ∈ Rd × (Rd \ 0), there are functions ϕx,1 ∈ Cx

and ψξ,1 ∈ C dir
ξ such that ϕx,1 · ψξ,1(D) f ∈ B. Now let x0 ∈ Rd be fixed, and recall that each closed

cone in Rd \ 0 corresponds to a compact set on the unit sphere. Hence, by compactness, it follows
that for some ϕx0,2 ∈ Cx0 , ξ1, . . . , ξN ∈ Rd \ 0 and some constant R > 0, we have

ϕx0,2 ⊗ ψ1 ∈ SG0,0
1,1, ϕx0,2 · ψ1(D) f ∈ B, and

ψ1(ξ) ≡
N∑

j=1

ψξ j,1(ξ) � 1, when |ξ | � R.

Now choose non-negative ϕ3 ∈ C∞
0 (Rd) such that ϕ3(ξ) = 1 when |ξ | � R . Then ϕx0,2 · ϕ3(D) f ∈

C∞
0 (Rd) ⊆ B, since ϕx0,2 ⊗ ϕ3 ∈ C∞

0 (R2d). Hence, for some ϕx0 ∈ Cx0 , open neighborhood U = Ux0 of

x0 and some constant C > 0, the element ax0 = Cϕx0 ⊗ (ψ1 + ϕ3) belongs to SG0,0
1,1 and is larger than

1 on U × Rd . Furthermore, Op(ax0 ) f ∈ B. Summing up we have proved that for each x ∈ Rd , there is
an open neighborhood Ux of x and an element ax ∈ SG0,0

1,1 such that ax � 1 on Ux and Op(ax) f ∈ B.
For each compact set K we may find finite numbers of Ux1 , . . . UxN which cover K . The result now

follows if we choose

a = ax1 + · · · + axN . �
Proof of Theorem 2.6. The right implication is obvious by Definition 2.1, since operators in Op(SG0,0

r,ρ)

are continuous on B.
Assume that WFB( f ) = ∅. Then WFm

B( f ) = ∅, m = 1,2,3. By Lemma 2.7(2), there is a non-negative

element a3 ∈ SG0,0
1,1, bounded open sets X1, X2 such that 0 ∈ X1, 0 ∈ X2, a3 � 1 in (Rd \ X1)× (Rd \ X2)

and Op(a3) f ∈ B. Furthermore, by Lemma 2.7(1), there are non-negative elements a1,a2 ∈ SG0,0
1,1 such

that a1 � 1 in X1 × Rd , a2 � 1 in Rd × X2, Op(a1) f ∈ B and Op(a2) f ∈ B. Hence, if a = a1 + a2 + a3, it
follows that

a ∈ SG0,0
1,1, Op(a) f ∈ B and a � 1. (2.4)

In particular, a is elliptic in SG0,0
1,1, which implies that for some b ∈ SG0,0

1,1 and h ∈ S we have

Op(b)Op(a) = Id +Op(h)

(cf. the proof of Proposition 1.14 in Appendix A). Since Op(b) and Op(h) are continuous on B and
S ⊆ B, (2.4) gives

f = Op(b)Op(a) f − Op(h) f ∈ B,

and the assertion follows. The proof is complete. �
We conclude the section by giving some remarks on wave-front sets of modulation space type.

We start to consider mapping properties under Fourier transformation. Here it is convenient to let ωT
be the composition of the weight ω ∈ P(R2d) with the torsion T (x, ξ) = (−ξ, x), and BT denote the
space of the pull-backs of the elements of the translation invariant BF-space B on R2d with respect
to T . That is,

BT = {F ◦ T ; F ∈ B}, and ωT = ω ◦ T , where T (x, ξ) = (−ξ, x). (2.5)
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The first two equalities in the following proposition are related to Lemma 2.4 in [6].

Proposition 2.8. Let m,n ∈ {1,2,3} be such that n equals 2, 1 and 3, when m equals 1, 2 and 3, respectively.
Also let B be a translation invariant BF-space on R2d, ω ∈ P(R2d), and let T , BT and ωT be as in (2.5). If
f ∈ S ′(R2d), then

T
(
WFm

M(ω,B)( f )
) = WFn

M(ωT ,BT )( f̂ ).

Proof. By Fourier’s inversion formula we have

∣∣(Vφ f ) ◦ T
∣∣ = |V

φ̂
f̂ |, F

(
a · (b(D) f

)) = ǎ(D)(b · f̂ ).

The result is now a straightforward consequence of these identities, Remark 2.2 and the definitions.
The details are left for the reader. �

Next we consider wave-front sets with respect to Fourier BF-spaces, and make comparisons with
wave-front sets of modulation space types. In fact, in Definition 2.1 we may choose B as the Fourier
BF-space FB0(ω), where B is a translation invariant BF-space on Rd and ω ∈ P(R2d). We remark
that if B is a translation invariant BF-space on R2d such that (1.10) holds, then (1.11) gives

WF1
M(ω,B)( f ) = WF1

FB0(ω)( f ), f ∈ S ′(Rd). (2.6)

The first type of wave-front sets with respect to general modulation space and Fourier BF-spaces
were introduced in [4]. Here we recall these definitions and show that they agree with corresponding
type-1 wave-front sets. Let f ∈ S ′(Rd), φ ∈ C∞

0 (Rd) and ω ∈ P(R2d). Also let χΓ be the characteristic
function of Γ . Then WF′

M(ω,B)
( f ) (denoted by WFM(ω,B)( f ) in [4]) consists of all pairs (x0, ξ0) ∈

Rd × (Rd \ 0) such that

∥∥(
Vφ(ϕ f )

) · (1 ⊗ χΓ ) · ω∥∥
B

= +∞

for every choice of open conical neighborhood Γ of ξ0 and ϕ ∈ Cx0 . The wave-front set WF′
FB(ω)

( f )

(denoted by WFFB(ω)
( f ) in [4]) consists of all pairs (x0, ξ0) ∈ Rd × (Rd \ 0) such that |ϕ f |FB(ω,Γ ) =

+∞ for every choice of open conical neighborhood Γ of ξ0 and ϕ ∈ Cx0 . Here

| f |FB(ω,Γ ) ≡ ‖ f̂ ωχΓ ‖B.

Proposition 2.9. Let f ∈ S ′(Rd), B be a translation invariant BF-space, B0 be defined by (1.10) and let
ω ∈ P(R2d). Then

WF1
M(ω,B)( f ) = WF′

M(ω,B)( f ) = WF1
FB0(ω)( f ) = WF′

FB0(ω)( f ).

Proof. By Theorem 6.9 in [4] we have WF′
M(ω,B)

( f ) = WF′
FB0(ω)

( f ). Hence, in view of (2.6), it suf-

fices to prove WF1
FB0(ω)

( f ) = WF′
FB0(ω)

( f ). By Remark 2.2 we have

(x0, ξ0) /∈ WF′
FB0(ω)( f )

⇐⇒ |ϕx0 f |FB0(ω,Γ ) < ∞ for some ϕx0 ∈ Cx0 and Γ = Γξ0

⇐⇒ ∥∥ψξ0(D)(ϕx0 f )
∥∥

FB0(ω)
< ∞ for some ϕx0 ∈ Cx0 and ψξ0 ∈ C dir

ξ0

⇐⇒ (x0, ξ0) /∈ WF1
FB0(ω)( f ).

This proves the result. �
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3. Wave-front sets for pseudo-differential operators with smooth symbols

In this section we consider mapping properties for pseudo-differential operators with respect to
global wave-front sets. More precisely, we prove that micro-locality and micro-ellipticity hold for
pseudo-differential operators in Op(SG(ω0)

r,ρ ). We start with the following result:

Theorem 3.1. Let m ∈ {1,2,3}, (r,ρ) ∈ Im, t ∈ R, ω0 ∈ Pr,ρ(R2d), a ∈ SG(ω0)
r,ρ (R2d) and let f ∈ S ′(Rd).

Moreover, let (B,C) be an SG-ordered pair with respect to ω0 . Then

WFm
C
(
Opt(a) f

) ⊆ WFm
B( f ) ⊆ WFm

C
(
Opt(a) f

) ∪ Charm
(ω0)(a). (3.1)

Proof. We only prove the case m = 3. The assertions for m = 1 and m = 2 follow by similar arguments
and are left for the reader.

Assume that (x0, ξ0) /∈ WF3
B( f ). We shall prove that (x0, ξ0) /∈ WF3

C(Op(a) f ). For some ψ1,1 ∈ C dir
x0

and ψ1,2 ∈ C dir
ξ0

we have

ψ1,1 · ψ1,2(D) f ∈ B, (3.2)

in view of (1) in Definition 2.1. Let ψ2,1 ∈ C dir
x0

and ψ2,2 ∈ C dir
ξ0

be such that ψ1, j = 1 on suppψ2, j ,
and set

c1(x, ξ) = ψ1,1(x)ψ1,2(ξ) and c2(x, ξ) = ψ2,1(x)ψ2,2(ξ).

Then c1, c2 ∈ SG0,0
r,ρ , and since c1 = 1 on supp c2, and SG−∞,−∞

r,ρ = S , it follows from the symbolic
calculus that

Op(c2)Op(a) = Op(c2)Op(a)Op(c1) mod Op(S ). (3.3)

Now we recall that the mappings

Op(a) :B → C, Op(c2) :C → C (3.4)

are continuous (cf. Proposition 1.7). A combination of (3.2)–(3.4) with the facts that Op(c1) = ψ1,1 ·
ψ1,2(D) and that Op(h) maps S ′ into S gives

ψ2,1 · ψ2,2(D)
(
Op(a) f

) = Op(c2)Op(a) f = Op(c2)Op(a)Op(c1) f mod S ∈ C.

This proves that (x0, ξ0) /∈ WF3
C(Op(a) f ), and the first inclusion in (3.1) follows.

It remains to prove the second inclusion in (3.1). Assume that

(x0, ξ0) /∈ WF3
C
(
Op(a) f

) ∪ Char3
(ω0)(a).

By Remark 2.4, there exist ψ1,1 ∈ C dir
x0

and ψ1,2 ∈ C dir
ξ0

, b ∈ SG(1/ω0)
r,ρ and h ∈ S such that

ψ1,1 · ψ1,2(D)
(
Op(a) f

) ∈ C

and (1.19) holds for c = c1 ≡ ψ1,1 ⊗ ψ1,2. We claim that

Op(c2) = Op(c2)Op(b)Op(c1)Op(a) + Op(h), (3.5)
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for some h ∈ S , where c2 = ψ2,1 ⊗ ψ2,2, and ψ2,1 ∈ C dir
x0

and ψ2,2 ∈ C dir
ξ0

are such that ψ1, j = 1 on
supp ψ2, j for j = 1,2.

In fact, by combining (1.19) with the fact that Op(c2)Op(c1) = Op(c2) mod Op(S ), we get

Op(c2) = Op(c2)Op(b)Op(a) mod Op(S )

= Op(c2)Op(c1)Op(b)Op(a) mod Op(S )

= Op(c2)Op(b)Op(c1)Op(a) mod Op(S ),

and (3.5) follows. Here the last equality follows from the fact that

Op(c2)
[
Op(b),Op(c1)

] ∈ Op(S ) and Op(S )Op(a) ⊆ Op(S ),

when c1 = 1 on supp c2, where [·,·] denotes the commutator. A combination of Proposition 1.7, (3.5)
and the fact that Op(c1)(Op(a) f ) ∈ C now shows that the mappings

Op(b) :C → B, Op(c2) :B → B

and

Op(h) : S ′ → S

are continuous and that Op(c2) f ∈ B. Hence, we have showed that (x0, ξ0) /∈ WF3
B( f ), and the proof

is complete. �
Corollary 3.2. Let m ∈ {1,2,3}, r > 0, f ∈ S ′(Rd) and ϕ ∈ C∞(Rd) be such that 〈x〉r|α|∂αϕ(x) ∈ L∞(Rd) for
every α. Also let B be SG-admissible with respect to r, 1 and d. Then

WFm
B(ϕ f ) ⊆ WFm

B( f ). (3.6)

Proof. It follows from the assumptions that a ≡ ϕ ⊗ 1 ∈ SG0,0
r,1 . Hence, for m ∈ {1,2,3}, Theorem 3.1

gives

WFm
B(ϕ f ) = WFm

B
(
Op(a) f

) ⊆ WFm
B( f ),

as claimed. �
Next we apply Theorem 3.1 on operators which are elliptic with respect to ω0 ∈ Pρ,δ(R2d) when

0 < r,ρ � 1. We recall that a and Op(a) are called SG-elliptic with respect to SG(ω0)
r,ρ (R2d) or ω0, if

there is a compact set K ⊂ R2d such that (1.18) holds when (x, ξ) /∈ K . By (1.15) it follows that

∣∣Dα
x Dβ

ξ a(x, ξ)
∣∣ �

∣∣a(x, ξ)
∣∣〈x〉−r|α|〈ξ〉−ρ|β|, (x, ξ) ∈ R2d \ K ,

for every multi-index α, when a is SG-elliptic (see, e.g., [16,1]).
It follows from Lemma 2.7 that Char(ω0)(a) = ∅ if and only if a is SG-elliptic with respect to ω0.

The following result is now an immediate consequence of Theorems 2.6 and 3.1.

Theorem 3.3. Let m ∈ {1,2,3}, (r,ρ) ∈ Im, t ∈ R, ω0 ∈ Pr,ρ(R2d), a ∈ SG(ω0)
r,ρ (R2d) be SG-elliptic with re-

spect to ω0 and let f ∈ S ′(Rd). Moreover, let (B,C) be an SG-ordered pair with respect to ω0 . Then

WFm
C
(
Opt(a) f

) = WFm
B( f ).
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Furthermore, if g ∈ C , and f ∈ S ′(Rd) solves the equation

Opt(a) f = g, (3.7)

then f ∈ B.

4. Examples

In this section we show how the results in the previous sections can be applied to problems
involving partial differential operators. In particular, we focus on the sets of characteristic points and
some links on possible application in numerical analysis.

In the first examples we consider wave-front properties for hypoelliptic problems, especially for
hypoelliptic partial differential operators with constant coefficients.

Example 4.1. Let a(x, ξ) be the symbol of a linear partial differential operator on Rd with constant
coefficients, which is hypoelliptic in the sense of [16]. Then a(x, ξ) = a2(ξ) for some a2. Furthermore,
a is type-m elliptic, m = 1,3, with respect to

ω0(x, ξ) = ω0(ξ) = (
1 + ∣∣a2(ξ)

∣∣2)1/2
, (4.1)

which belongs to Pr,ρ(R2d), for some r,ρ > 0. In particular we may apply Theorem 3.3 on Op(a).
For the set of characteristic points of type-2 we have

Char2
(ω0)(a) ⊆ (

Rd \ 0
) × {

(0,0)
}
.

Hence if B = M(ω,B) is a modulation space, C = M(ω/ω0,B) and f ∈ S ′(Rd), then

WFm
C
(
Op(a) f

) = WFm
B( f ), m = 1,3, and

WF2
C
(
Op(a) f

) ⊆ WF2
B( f ) ⊆ WF2

C
(
Op(a) f

) ∪ ((
Rd \ 0

) × {0}).
Now we apply the wave-front properties to obtain information for a parametrix E to Op(a). From

Proposition 1.7(3) it follows that Op(a) maps M p,q
(ω0) to M p,q . Since

M p,q ∩ E ′ = F Lq ∩ E ′

and Op(a)E is locally in F L∞ , it follows that E is locally in F L∞
(ω0) . This means that for each ϕ ∈ C∞

0 ,
we have

∣∣F (ϕE)(ξ)
∣∣ � ω0(ξ)−1. (4.2)

An interesting case appears when x ∈ Rd is replaced by (x, t) ∈ Rd+1, and Op(a) agrees with the
heat operator

∂t − �x, (x, t) ∈ Rd+1,

which is a classical example on a hypoelliptic operator. The symbol is given by a(x, t, ξ, τ ) = |ξ |2 + iτ .
In this case, ω0 takes the form

ω0 = (
1 + |ξ |4 + |τ |2)1/2

. (4.1)′
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Hence, (4.2) shows that if E is a fundamental solution to Op(a), then for each ϕ ∈ C∞
0 , there is a

constant C such that

∣∣F (ϕE)(ξ, τ )
∣∣ � C

(
1 + |ξ |4 + |τ |2)−1/2

.

This can easily be verified by numerical computations.

Next we show how a small perturbation of any hypoelliptic operator in the previous example
makes that all the sets of characteristic points become empty.

Example 4.2. Let 0 < r,ρ � 1, a(x, ξ) = a1(x, ξ) + a2(ξ) be such that the following conditions are
fulfilled:

(1) |a(x, ξ)| � c for some constant c > 0 outside a compact set in R2d;
(2) a1 ∈ SG0,0

r,ρ(R2d);
(3) a2 is the symbol of a linear partial differential operator with constant coefficient which is hypoel-

liptic in the sense of [16].

Then a is elliptic with respect to ω0(x, ξ) in (4.1). Hence we may again apply Theorem 3.3 on Op(a).
An interesting case concerns the modified heat operator a1(x, t) + ∂t − �x , where (x, t) ∈ Rd+1,

a1(x, t) ∈ C∞(Rd+1) and a1 is equal to c > 0 outside a compact set in Rd+1. The symbol of the operator
is a(x, t, ξ, τ ) = a1(x, t) + |ξ |2 + iτ . In this case, a is elliptic with respect to (4.1)′ . Hence, if ω ∈
P(R2d), B is a translation invariant BF-space on Rd , and (3.7) holds for some f ∈ S ′(Rd) and g ∈
M(ω/ω0,B), then it follows from Theorem 3.3 that f ∈ M(ω,B).

In the next example we consider the fundamental solutions of the Schrödinger operator.

Example 4.3. The Schrödinger operator for a free particle has the form

i∂t − �x, (x, t) ∈ Rd+1,

and the symbol is given by a(x, t, ξ, τ ) = |ξ |2 − τ . Let ω0 be the same as in (4.1). Then, a ∈ SG(ω0)
1,1 ,

and the sets of characteristic points are

Char1
(ω0)(a) = {

(x, t, ξ, τ ) ∈ Rd+1 × (
Rd+1 \ 0

); ξ = 0, τ > 0
}
,

Char2
(ω0)(a) = {

(x, t, ξ, τ ) ∈ (
Rd+1 \ 0

) × Rd+1; τ = |ξ |2},
Char3

(ω0)(a) = {
(x, t, ξ, τ ) ∈ (

Rd+1 \ 0
) × (

Rd+1 \ 0
); ξ = 0, τ > 0

}
.

This implies that numerical computations can be rather easily performed as long as the frequency τ
related to the t-variable is negative.

Let E denote the fundamental solution of Op(a). From Proposition 1.7(3) it follows that Op(a)

maps M p,q
(ω0) to M p,q . Now let Γ be a cone which does not hit the set {(0, τ ); τ > 0}. Then the same

arguments as in Example 4.1 show that

∥∥F (ϕE)ψω0
∥∥

L∞ < ∞

for every ϕ ∈ C∞
0 and ψ ∈ C dir

ξ0
(Γ ).
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Remark 4.4. Here we note, once again, that the sets of characteristic points Char′(a), as defined in
Section 18.1 in [16], for the operators in Examples 4.3 and 4.1, are strictly larger compared to the
corresponding local components Char1

(ω0)(a). In fact, if a is the same as in Example 4.3 or 4.1, then

Char′(a) = {
(x, t, ξ, τ ) ∈ Rd+1 × (

Rd+1 \ 0
); ξ = 0, τ �= 0

}
,

which strictly includes Char1
(ω0)(a).

In the next example we consider an operator with polynomial coefficients, with different growth
with respect to spatial axis. We show the associated loss of decay at infinity, in terms of wave-front
sets with respect to H2

s,t spaces.

Example 4.5. Let a(x, ξ) be the symbol on R4, given by

a(x, ξ) = (
1 + x2

1 + x4
2

)(
1 + |ξ |2), x, ξ ∈ R2.

Also assume that f , g ∈ S ′(R2) are chosen such that the equation Op(a) f = g is fulfilled. By letting
ω0(x, ξ) = a(x, ξ), it follows that a is elliptic with respect to ω0, and that a ∈ SG(ω0)

1,1 (R4). If

H2
(ω0)

(
R2) ≡ {

f ∈ S ′(R2); (
1 + x2

1 + x4
2

)
(1 − �) f ∈ L2(R2)} = M2

(ω0)

(
R2),

then it is obvious that f ∈ H2
(ω0)

, if and only if g ∈ L2, which is also confirmed by Theorem 3.3.

Furthermore, a ∈ SG4,2
1,1(R4) is SG-hypoelliptic with inverse order (2,2), in the sense of [2], since, for

|x| + |ξ | � R > 0,

〈x〉2〈ξ〉2 � a(x, ξ) � 〈x〉4〈ξ〉2.

We consider Op(a) when acting on the scale of weighted Sobolev spaces H2
s,t(R2), s, t ∈ R, and inves-

tigate the solutions of the equation Op(a) f = g with g ∈ H2
0,0(R2) = L2(R2). Let

c1 = ψ1 ⊗ ϕ1, where ψ1 ∈ C dir
(x1,0), ϕ1 ∈ Cξ0 , x1 �= 0, ξ0 ∈ R2,

and

c2 = ψ2 ⊗ ϕ2, where ψ2 ∈ C dir
(0,x2), ϕ2 ∈ Cξ0 , x2 �= 0, ξ0 ∈ R2.

Then there exist b j ∈ SG−2 j,−2
1,1 (R4) and h j ∈ S (R4) for j = 1,2 such that Op(b j)Op(a) = Op(c j) +

Op(h j). (In fact, Op(a) is invertible with inverse Op(b), where b ∈ SG(1/ω0)

1,1 (R4).) This implies that for
some choices of f and g , there are anisotropic loss of decays for f , in the sense that for any ε > 0,

(
(x1,0), ξ

) ∈ WF2
H2

2,2+ε
( f ) \ WF2

H2
2,2

( f ), x1 �= 0,

(
(0, x2), ξ

) ∈ WF2
H2

2,4+ε
( f ) \ WF2

H2
2,4

( f ), x2 �= 0, (4.3)

and the same results hold for the corresponding WF3
H2

s,t
( f ) components, by choosing symbols

c j = ψ1 j ⊗ ψ2 j, where ψ1 j ∈ C dir
x , ψ2 j ∈ C dir

ξ , j = 1,2, x, ξ �= 0.
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In particular, the first formula in (4.3) holds also with any (x1, x2) ∈ R2, x1 �= 0, in place of (x1,0),
x1 �= 0.

In the next example, we apply the theory to the propagation of electromagnetic waves in a wave-
guide. The corresponding problem, concerning electromagnetic waves in a uniform cylindrical wave-
guide, has been considered by Kristensson in [19] and by Khrennikov and Nilsson in [18], and will be
viewed here in the context of pseudo-differential operators and wave-front sets.

Example 4.6. Let S ⊂ R3 be a conducting cylindrical tube along the x3 axis with ∂ S as its boundary
surface. With S0 we denote the cross section in the x1x2-plane, assumed to be compact and with a
smooth boundary.

For the propagation of the electromagnetic wave, we then have a scalar field φ = φ(x, t) =
φ(x1, x2, x3, t), (x1, x2, x3) ∈ S , t ∈ R , satisfying the wave equation in the wave-guide, i.e.,

(
�x − ∂2

t

)
φ = 0.

As boundary conditions we may choose either the Neumann boundary condition, given by ∂Nφ = 0
on ∂ S , or the Dirichlet boundary condition, given by φ = 0 on ∂ S . Here ∂N is the normal derivative.
When solving such type of equation one can use a splitting technique, separating the pairs of variables
(x1, x2) and (x3, t). The solution can then be written as

φ(x1, x2, x3, t) =
∞∑

n=1

vn(x1, x2)wn(x3, t),

where {vn(x, y)}, n = 1,2, . . . , is a complete orthonormal system of eigenfunctions of

(
∂2

x1
+ ∂2

x2
+ m2

n

)
vn(x1, x2) = 0,

with ∂N vn = 0 or vn = 0 on ∂ S0, with eigenvalues −m2
n . We have that wn satisfies the Klein–Gordon

equation

(
∂2

x3
− ∂2

t − m2
n

)
wn(x3, t) = 0. (4.4)

In the (x1, x2) direction the problem can be solved using discretization and Fourier series, since
the cross section is finite. We therefore consider Eq. (4.4). The operator on the left-hand side of
(4.4) can be written as a pseudo-differential operator with symbol a(x3, t, ξ3, τ ) = τ 2 − ξ2

3 − m2
n . Let

ω0(x3, t, ξ3, τ ) = (1 + ξ2
3 + τ 2). Then a ∈ SG(ω0)

1,1 has the following sets of characteristic points

Char1
(ω0)(a) = {

(x3, t, ξ3, τ ) ∈ R4; τ = ±ξ3 �= 0
}
,

Char2
(ω0)(a) = {

(x3, t, ξ3, τ ) ∈ (
R2 \ 0

) × R2; τ = ±
√

ξ2
3 + m2

n
}
,

Char3
(ω0)(a) = {

(x3, t, ξ3, τ ) ∈ (
R2 \ 0

) × R2; τ = ±ξ3 �= 0
}
.

Now let Γ be a closed cone which does not contain any point from the set {(ξ3, τ ); τ = ±ξ3}.
Furthermore let wn be the solution of Eq. (4.4). Since the right-hand side in (4.4) is zero, it follows
that for every x0 there exist ϕ ∈ Cx0 and ψ ∈ C dir

ξ0
(Γ ) such that ψF (ϕwn) ∈ S .
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5. Wave-front sets with respect to sequences of spaces

In this section we define wave-front sets based on sequences of admissible spaces, and discuss
basic results. In the first part we consider sequences of spaces which are parameterized with one
index, and prove that the mapping properties in Section 3 extend to wave-front sets with respect to
sequences. Thereafter we discuss further extensions where we consider sequences of spaces which are
parameterized with two indices. In the last part we give some examples on new types of wave-front
sets that can be constructed, and show some consequences of our investigations. For example, here
we introduce wave-front sets which are related to “classical wave-front sets” in the sense that they
are wave-front sets with respect to classical spaces of smooth functions. In particular, we show that
(a refinement of) the wave-front set of Schwartz type treated in [6] can be obtained as a wave-front
set based on sequences of admissible spaces.

5.1. Wave-front sets with respect to sequences with one index parameter

Again we start by introducing the complements of the wave-front sets. More precisely, let J be an
index set of integers, Ωm , m ∈ {1,2,3}, be given by (1.20), (B j) = (B j) j∈ J be a sequence of Banach
or Fréchet spaces such that S (Rd) ⊆ B j ⊆ S ′(Rd), for every j, and let f ∈ S ′(Rd). Then the point
(x0, ξ0) ∈ Ωm is called type-(m,∪) regular (type-(m,∩) regular) for f with respect to (B j), if

Op(cm) f ∈
⋂

j

B j

(
Op(cm) f ∈

⋃
j

B j

)
, (2.1)′

for some cm in Remark 1.13. The set of all type-(m,∪) regular points (type-(m,∩) regular points) for
f with respect to (B j), is denoted by Θ

m,∪
(B j)

( f ) (Θm,∩
(B j)

( f )).

It is also desirable that right-hand sides of (2.1)′ should be a vector space, which is guaranteed by
imposing that (B j) should be ordered, i.e. B j should be increasing or decreasing with respect to j ∈ J .

Definition 5.1. Let J be an index set of integers, m ∈ {1,2,3}, Ωm be as in (1.20), and let (B j) j∈ J be a
sequence of Banach or Fréchet spaces such that S (Rd) ⊆ B j ⊂ S ′(Rd), for every j:

(1) the type-(m,∪) wave-front set (type-(m,∩) wave-front set) of f ∈ S ′(Rd) with respect to (B j) is
the complement of Θ

m,∪
(B j)

( f ) (Θm,∩
(B j)

( f )) in Ωm , and is denoted by WFm,∪
(B j)

( f ) (WFm,∩
(B j)

( f ));

(2) the global wave-front sets WF∪
(B j)

( f ) ⊆ (Rd × Rd) \ 0 and WF∩
(B j)

( f ) ⊆ (Rd × Rd) \ 0, of ∪ and ∩
types, respectively, are the sets

WF∪
(B j)

( f ) ≡ WF1,∪
(B j)

( f ) ∪ WF2,∪
(B j)

( f ) ∪ WF3,∪
(B j)

( f ),

WF∩
(B j)

( f ) ≡ WF1,∩
(B j)

( f ) ∪ WF2,∩
(B j)

( f ) ∪ WF3,∩
(B j)

( f ).

Example 5.2. We can consider wave-front sets with respect to sequences of the form

(B j) ≡ (B j) j∈ J , with B j = M(ω j,B j), (5.1)

where ω j ∈ P(R2d), B j is a translation invariant BF-space on Rd , and j belongs to some index set J .

Remark 5.3. Let p j,q j ∈ [1,∞], B j = L
p j ,q j

1 (R2d), ω j(x, ξ) = 〈x, ξ〉− j and let B j be as in (5.1) for
j ∈ J = N0. Then it follows that WFm,∪

(B j)
( f ), m = 1,2,3, in Definition 5.1 are equal to the wave-front

sets WFψ( f ), WFe( f ) and WFψe( f ) in [6], respectively. In particular, it follows that WF∪
(B j)

( f ) is equal

to the global wave-front set WFS ( f ), which in [6] is denoted by WFS ( f ).
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Remark 5.4. Evidently, if B j = B for every j ∈ J , then

WFm,∪
(B j)

( f ) = WFm,∩
(B j)

( f ) = WFm
B( f ), m = 1,2,3.

In the following two results we make some basic remarks, which also motivates the notations for
wave-front sets of sequence types.

Proposition 5.5. Let m ∈ {1,2,3}, B j be the same as in Definition 5.1, and let f ∈ S ′(Rd). Then

⋃
WFm

B j
( f ) ⊆ WFm,∪

(B j)
( f ),

⋃
WFB j

( f ) ⊆ WF∪
(B j)

( f ),

and

⋂
WFm

B j
( f ) = WFm,∩

(B j)
( f ),

⋂
WFB j

( f ) = WF∩
(B j)

( f ).

Proposition 5.5 is a straightforward consequence of the definitions. We refer to Proposition 4.4
in [5] for the proof. The details are left for the reader. We remark that we may choose B j and
f ∈ S ′(Rd) such that equality is not attained in the first inclusion in Proposition 5.5 when m = 1
(cf. [25, Example 1.11]).

The following generalization of Theorem 2.6 shows that the global wave-front sets of sequence
types describe the regularity of a tempered distribution with respect to intersections and unions of
the involved spaces, provided the latter are SG-admissible.

Theorem 2.6′ . Let B j be SG-admissible for every j, and let f ∈ S ′(Rd). Then

f ∈
⋂

B j ⇐⇒ WF∪
(B j)

( f ) = ∅, (5.2)

and, if in addition (B j) is ordered,

f ∈
⋃

B j ⇐⇒ WF∩
(B j)

( f ) = ∅. (5.3)

Proof. We only prove the first equivalence: the second one follows by a similar argument and is left
for the reader.

We notice that f ∈ ⋂
B j ⇔ ⋃

WFB j
( f ) = ∅ is an immediate consequence of the definitions and

Theorem 2.6. Therefore, in view of Proposition 5.5, the equivalence (5.2) follows if we prove that
f ∈ ⋂

B j implies WF∪
(B j)

( f ) = ∅.

To this aim, assume that f ∈ ⋂
B j . Since every B j is SG-admissible, and g1 ⊗ g2 ∈ SG0,0

1,1 when g1
and g2 are any cutoff or directional cutoff, it follows that g1 · g2(D) f ∈ B j for every j. This implies
that WF∪

(B j)
( f ) = ∅, and the result follows. �

5.2. Wave-front sets with respect to sequences of spaces with two indices parameters

Next we shall consider wave-front sets with respect to sequences of spaces, parameterized with
two indices, and start by introducing the complements of the wave-front sets. More precisely, let J
be an index set of integers, Ωm , m ∈ {1,2,3}, be given by (1.20), (B j,k) = (B j,k) j,k∈ J be a sequence of
Banach or Fréchet spaces such that S (Rd) ⊆ B j,k ⊆ S ′(Rd), for every j,k, and let f ∈ S ′(Rd). Then
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the point (x0, ξ0) ∈ Ωm is called type-(m,∪∩) regular (type-(m,∩∪) regular) for f with respect to
(B j,k), if

Op(cm) f ∈
⋂

j

(⋃
k

B j,k

) (
Op(cm) f ∈

⋃
j

(⋂
k

B j,k

))
, (2.1)′′

for some cm in Remark 1.13. The set of all type-(m,∪∩) regular points (type-(m,∩∪) regular points)
for f with respect to (B j,k), is denoted by Θ

m,∪∩
(B j,k)

( f ) (Θm,∩∪
(B j,k)

( f )).

Also in here it is desirable that right-hand sides of (2.1)′′ should be a vector space. For this reason,
the sequence (B j,k) is called ordered with respect to j, if B j,k increases with j for every k fixed, or
decreases with j for every k fixed. The definition of ordered sequences with respect to k is defined in
analogous way.

Definition 5.6. Let J be an index set, m ∈ {1,2,3}, Ωm be as in (1.20), and let (B j,k) j,k∈ J be a sequence
of Banach or Fréchet spaces such that S (Rd) ⊆ B j,k ⊂ S ′(Rd), for every j:

(1) the type-(m,∪∩) wave-front set (type-(m,∩∪) wave-front set) of f ∈ S ′(Rd) with respect to (B j,k)

is the complement of Θ
m,∪∩
(B j,k)

( f ) (Θm,∩∪
(B j,k)

( f )) in Ωm , and is denoted by WFm,∪∩
(B j,k)

( f ) (WFm,∩∪
(B j,k)

( f ));

(2) the global wave-front sets WF∪∩
(B j,k)

( f ) ⊆ (Rd × Rd) \ 0 and WF∩∪
(B j,k)

( f ) ⊆ (Rd × Rd) \ 0, of ∪∩ and

∩∪ types, respectively, are the sets

WF∪∩
(B j,k)

( f ) ≡ WF1,∪∩
(B j,k)

( f ) ∪ WF2,∪∩
(B j,k)

( f ) ∪ WF3,∪∩
(B j,k)

( f ),

WF∩∪
(B j,k)

( f ) ≡ WF1,∩∪
(B j,k)

( f ) ∪ WF2,∩∪
(B j,k)

( f ) ∪ WF3,∩∪
(B j,k)

( f ).

Remark 5.7. In analogy with Remark 5.4 we notice that if B j,k = B j is independent of k ∈ J , then

WFm,∪∩
(B j,k)

( f ) = WFm,∪
(B j)

( f ), WFm,∩∪
(B j,k)

( f ) = WFm,∩
(B j)

( f ), m = 1,2,3.

Hence, the families of wave-front sets in Definition 5.6 contain the wave-front sets in Definition 5.1.

Remark 5.8. We observe that if m ∈ {1,2,3}, B j,k is SG-admissible for every j,k, Ωm is given by (1.20)
and f ∈ S ′(Rd), then WFm,∪∩

(B j,k)
( f ) and WFm,∩∪

(B j,k)
( f ) are closed subsets of Ωm .

By Remark 5.7, it follows that the next two results generalize Proposition 5.5 and Theorem 2.6′ .
The proofs are similar to the latter results, see Theorems 4.9 and 4.10 in [5]. Here WFm,∪

(B j,k)k
( f )

(WFm,∩
(B j,k)k

( f )) is the type-(m,∪) (type-(m,∩)) wave-front set of f with respect to (B j,k)k∈ J , where

j ∈ J is fixed.

Proposition 5.5′ . Let m ∈ {1,2,3}, B j,k be the same as in Definition 5.6, and let f ∈ S ′(Rd). Then

⋃
j

WFm,∩
(B j,k)k

( f ) ⊆ WFm,∪∩
(B j,k)

( f ),
⋃

j

WF∩
(B j,k)k

( f ) ⊆ WF∪∩
(B j,k)

( f ),

and

⋂
j

WFm,∪
(B j,k)k

( f ) = WFm,∩∪
(B j,k)

( f ),
⋂

j

WF∪
(B j,k)k

( f ) = WF∩∪
(B j,k)

( f ).
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Theorem 2.6′′ . Let B j,k be SG-admissible for every j and k, and let f ∈ S ′(Rd). Then

f ∈
⋂

j

(⋃
k

B j,k

)
⇐⇒ WF∪∩

(B j,k)
( f ) = ∅, (5.2)′

provided (B j,k) is ordered with respect to k, and, if instead (B j,k) is ordered with respect to j,

f ∈
⋃

j

(⋂
k

B j,k

)
⇐⇒ WF∩∪

(B j,k)
( f ) = ∅. (5.3)′

Remark 5.9. We have that (5.2) is equivalent to
⋃

WFB j
( f ) = ∅, as observed in the proof of The-

orem 2.6′ , while (5.3) is equivalent to
⋂

WFB j
( f ) = ∅. That is, the inclusions in Proposition 5.5

turn into equalities when the left-hand sides are empty, and the same holds for the inclusions
in Proposition 5.5′ . Moreover, (5.2)′ is equivalent to

⋃
j(
⋂

k WFB j,k
( f )) = ∅, and (5.3)′ implies⋂

j(
⋃

k WFB j,k
( f )) = ∅.

From now on we assume that the involved sequence spaces, (B j,k), are ordered with respect to
k when wave-front sets of the form WFm,∪∩

(B j,k)
( f ) are involved, and ordered with respect to j when

wave-front sets of the form WFm,∩∪
(B j,k)

( f ) are involved.

Remark 5.10. In a similar way as in Remark 5.3, we may construct wave-front sets with respect to
the spaces Q 0(Rd) and Q (Rd) (see the introduction for the definition of these spaces).

In fact, let

p j,k,q j,k ∈ [1,∞], B j,k = L
p j,k,q j,k

1

(
R2d), ω j,k(x, ξ) = 〈x〉− j〈ξ〉k,

B j,k = M(ω j,k,B j,k), C j,k = Bk, j when j,k ∈ J = N0.

By similar arguments as in [14, Remark 2.18] it follows that

Q 0
(
Rd) =

⋃
j

(⋂
k

B j,k

)
, Q

(
Rd) =

⋂
j

(⋃
k

C j,k

)
.

Now we define the components of the wave-front sets with respect to Q 0 and Q as

WFm
Q 0

( f ) = WFm,∩∪
(B j,k)

( f ), WFm
Q ( f ) = WFm,∪∩

(C j,k)
( f ), m = 1,2,3,

when f ∈ S ′(Rd). By Theorem 2.6′′ it follows that (0.4) holds when B = Q 0(Rd) or B = Q (Rd).
We also note that Remark 2.3 gives that

WF1
S ( f ) = WF1

Q 0
( f ) = WF1

Q ( f ) = WF1
C∞( f )

agrees with the classical wave-front set of f (cf. Section 8.1 in [16]).
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5.3. Mapping properties for pseudo-differential operators

Next we consider mapping properties for pseudo-differential operators on wave-front sets of se-
quence types. The following result follows immediately from the definitions, Theorem 3.1 and its
proofs.

Theorem 3.1′ . Let m ∈ {1,2,3}, (r,ρ) ∈ Im, t ∈ R, ω0 ∈ Pr,ρ(R2d), a ∈ SG(ω0)
r,ρ (R2d) and let f ∈ S ′(Rd).

Moreover, let (B j,k,C j,k) be an SG-ordered pair with respect to ω0 for every j,k ∈ J . Then

WFm,∪∩
(C j,k)

(
Opt(a) f

) ⊆ WFm,∪∩
(B j,k)

( f )

⊆ WFm,∪∩
(C j,k)

(
Opt(a) f

) ∪ Charm
(ω0)(a) (3.1)′

and

WFm,∩∪
(C j,k)

(
Opt(a) f

) ⊆ WFm,∩∪
(B j,k)

( f )

⊆ WFm,∩∪
(C j,k)

(
Opt(a) f

) ∪ Charm
(ω0)(a). (3.1)′′

We note that several properties that are valid for the wave-front sets of modulation space types
also hold for wave-front sets in the present section. The following generalization of Theorem 3.3 is
an immediate consequence of Theorem 3.1, since Char(ω0)(a) = ∅, when a is SG-elliptic with respect
to ω0.

Theorem 3.3′ . Let m ∈ {1,2,3}, (r,ρ) ∈ I3 , t ∈ R, ω0 ∈ Pr,ρ(R2d) and let a ∈ SG(ω0)
r,ρ (R2d) be SG-elliptic

with respect to ω0 and let f ∈ S ′(Rd). Moreover, let (B j,k,C j,k) be an SG-ordered pair with respect to ω0 for
every j,k ∈ J . Then

WFm,∪∩
(C j,k)

(
Opt(a) f

) = WFm,∪∩
(B j,k)

( f ),

WFm,∩∪
(C j,k)

(
Opt(a) f

) = WFm,∩∪
(B j,k)

( f ).

Next we list some consequences of the previous results. We are especially focused on mapping
and wave-front properties in the framework of the spaces S , Q 0 and Q .

We start with the following result, where the first part is a slight extension of [6, Theorem 1.1].

Proposition 5.11. Let m ∈ {1,2,3}, (r,ρ) ∈ Im, t ∈ R, and let ω0 ∈ Pρ,δ(R2d). Also let a ∈ SG(ω0)
r,ρ (R2d),

f ∈ S ′(Rd), and B be equal to S (Rd), Q 0(Rd) or Q (Rd). Then

WFm
B
(
Opt(a) f

) ⊆ WFm
B( f ) ⊆ WFm

B
(
Opt(a) f

) ∪ Charm
(ω0)(a).

Proof. The result is an immediate consequence of Remark 5.3, Theorems 2.6′ and 3.3′ . �
A combination of the previous result and Theorems 2.6 and 3.3′ gives the following.

Proposition 5.12. Let m ∈ {1,2,3}, (r,ρ) ∈ I3 , t ∈ R and ω0 ∈ Pr,ρ(R2d). Also let a ∈ SG(ω0)
r,ρ (R2d) be SG-

elliptic with respect to ω0 , f ∈ S ′(Rd), and B be equal to S (Rd), Q 0(Rd) or Q (Rd). Then
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WFm
B
(
Opt(a) f

) = WFm
B( f ).

In particular, if f , g ∈ S ′(Rd) satisfy Opt(a) f = g, then f ∈ B, if and only if g ∈ B.

Example 5.13. Let r, ρ , a and ω0 be the same as in Example 4.2. Then the conclusions in Proposi-
tion 5.12 hold for Op(a).

Example 5.14. Let x = (x1, x2) ∈ Rd and ξ = (ξ1, ξ2) ∈ Rd , where x1, ξ1 ∈ V 1 and x2, ξ2 ∈ V 2 and V 1 ⊕
V 2 = Rd . We may consider wave-front sets with respect to a space of distributions which behave like
S in the x1-variable and like S ′ in the x2-variable. More precisely, let

ω j,0(x1, ξ1) = 〈x1, ξ1〉 j, ω0,k(x2, ξ2) = 〈x2, ξ2〉−k and

ω j,k(x, ξ) = 〈x1, ξ1〉 j〈x2, ξ2〉−k.

Then

⋂
j�0

M p,q
(ω j,0)(V 1) = S (V 1) and

⋃
k�0

M p,q
(ω0,k)

(V 2) = S ′(V 2).

Hence, we may interpret the set

B =
⋂
j�0

( ⋃
k�0

M p,q
(ω j,k)

(
Rd))

as S (V 1;S ′(V 2)), the set of all tempered distributions which behaves like S in the x1-variable, and
like S ′ in the x2-variable.

The wave-front set with respect to B is the wave-front set of ∪∩-type with respect to the sequence
of modulation spaces (M p,q

(ω j,k)
(Rd)) j,k�0. In particular, all the mapping properties (e.g. Theorems 3.1′

and 3.3′) hold for such wave-front sets.

The set of characteristic points which we considered so far is defined in terms of certain elliptic
conditions for the given symbol class. In what follows we give examples on how the results in the
present and previous section can be extended by replacing these elliptic types of set of characteristic
points with hypoelliptic ones. For this reason, let r,ρ ∈ [0,1], and let ω1,ω2 ∈ Pr,ρ(R2d) be such that

〈x〉−δr〈ξ〉−δρω2(x, ξ) � ω1(x, ξ) � Cω2(x, ξ), (5.4)

for some constant δ < 1. Then a ∈ SG(ω2)
r,ρ (R2d) is called SG-hypoelliptic with respect to (ω2,ω1), if

there is a constant c > 0 such that

cω1(x, ξ) �
∣∣a(x, ξ)

∣∣ (5.5)

outside a compact set in R2d .

Definition 5.15. The symbol a is called locally or type-1 hypoelliptic at (x0, ξ0) ∈ Rd × (Rd \ 0), if (5.5)
holds when x ∈ X , ξ ∈ Γ and |ξ | > R , for some neighborhood X of x0, some conical neighborhood
Γ of ξ0 and some constant R > 0. The set of characteristic points of type-1 for a with respect to
(ω2,ω1) is denoted by

Char1
(ω ,ω )(a), (5.6)
2 1
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and consists of all (x0, ξ0) ∈ Rd × (Rd \ 0), where a fails to be type-1 hypoelliptic. The sets of charac-
teristic points

Char2
(ω2,ω1)(a) ⊆ (

Rd \ 0
) × Rd and Char3

(ω2,ω1)(a) ⊆ (
Rd \ 0

) × (
Rd \ 0

)
(5.7)

are defined in analogous ways.

We observe that SG-hypoellipticity of a is equivalent to the fact that

Charm
(ω2,ω1)(a), m = 1,2,3,

are empty.
Now assume that ω1,ω2 ∈ Pr,ρ(R2d) fulfill (5.4) for some δ < 1. Then the same arguments as in

the proof of Proposition 1.14 in Appendix A, show that Proposition 1.14 holds for ω0 = ω2, after the
assumption b ∈ SG(1/ω0)

r,ρ (R2d) has been replaced by b ∈ SG(1/ω1)
r,ρ (R2d), and the sets of characteristic

points have been replaced by the corresponding ones in (5.6) and (5.7).
The following extension of Theorem 3.1′ now follows by similar arguments as in the proof of

Theorem 3.1. The details are left for the reader.

Theorem 3.1′′ . Let m ∈ {1,2,3}, (r,ρ) ∈ Im, t ∈ R, ω1,ω2 ∈ Pr,ρ(R2d) be such that (5.4) holds for some

δ < 1, a ∈ SG(ω2)
r,ρ (R2d) and let f ∈ S ′(Rd). Moreover, let (B j,k,C j,k) and (B j,k,D j,k) be SG-ordered pairs

with respect to ω2 and ω1 respectively for every j,k ∈ J . Then

WFm,∪∩
(C j,k)

(
Opt(a) f

) ⊆ WFm,∪∩
(B j,k)

( f )

⊆ WFm,∪∩
(D j,k)

(
Opt(a) f

) ∪ Charm
(ω2,ω1)(a), (3.1)′′

and

WFm,∩∪
(C j,k)

(
Opt(a) f

) ⊆ WFm,∩∪
(B j,k)

( f )

⊆ WFm,∩∪
(D j,k)

(
Opt(a) f

) ∪ Charm
(ω2,ω1)(a). (3.1)′′′
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Appendix A

In this appendix we give a proof of Proposition 1.14 for m = 3.

Proof of Proposition 1.14 for m = 3. We may assume that t = 0 in view of Proposition 1.7. The
equivalence between (1) and (2) follows easily by letting b(x, ξ) = ψ1(x)ψ2(ξ)/a(x, ξ), for appropriate
ψ1 ∈ C dir

x0
and ψ2 ∈ C dir

ξ0
.

(4) ⇒ (3) is obvious in view of Remark 1.13. Assume that (3) holds. We claim that
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∣∣a(x, ξ)b(x, ξ)
∣∣ � 1/2 (A.1)

holds when

(x, ξ) ∈ Γ1 × Γ2, |x| � R, |ξ | � R, (A.2)

for some choice of conical neighborhoods Γ1 and Γ2 of x0 and ξ0, respectively, and some R > 0.
In fact, the assumptions imply that ab = c + h1 for some h1 ∈ SG−r,0

r,ρ +SG0,−ρ
r,ρ . By choosing R large

enough and Γ1 and Γ2 sufficiently small conical neighborhoods of x0 and ξ0, respectively, it follows
that c(x, ξ) = 1 and |h(x, ξ)| � 1/2 when (A.2) holds. This gives (A.1). Since |b| � C/ω, it follows that
(1.18) is fulfilled, and (1) follows.

It remains to prove that (2) implies (4). Assume therefore that (2) is true. Let ψ1,k ∈ C dir
x0

(Γ1) and

ψ2,k ∈ Cdir
ξ0

(Γ2) for k = 1, . . . ,4, be chosen such that

b1(x, ξ) ≡ ψ1,1(x)ψ2,1(ξ)/a(x, ξ) ∈ SG(1/ω0)
r,ρ ,

and ψ j,k = 1 on suppψ j,k+1. If c1 = ψ1,1 ⊗ ψ2,1 ∈ SG0,0
r,ρ , then it follows that

Op(b j)Op(a) = Op(c j) + Op(h j) (A.3)

holds for j = 1 and some h1 ∈ SG−r,−ρ
r,ρ .

For j � 2 we now define b̃ j ∈ SG(1/ω)
r,ρ by the Neumann series

Op(b̃ j) =
j−1∑
k=0

(−1)k Op(r̃k),

where Op(r̃k) = Op(h1)
k Op(b1) ∈ Op(SG

(σ−kρ,−kρ/ω0)
r,ρ ). Then (A.3) gives

Op(b̃ j)Op(a) =
j−1∑
k=0

(−1)k Op(h1)
k Op(b1)Op(a)

=
j−1∑
k=0

(−1)k Op(h1)
k(Op(c1) + Op(h1)

)

= Op(c1) + Op(h̃1, j) + Op(h̃2, j), (A.4)

where

Op(h̃1, j) = (−1) j Op(h1)
j ∈ Op

(
SG− jr,− jρ

r,ρ
)

(A.5)

and

Op(h̃2, j) = −
j−1∑

(−1)k Op(h1)
k Op(1 − c1) ∈ Op

(
SG0,0

r,ρ

)
.

k=1
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By asymptotic expansions it follows that

Op(h̃2, j) = −
j−1∑
k=1

(−1)k Op(1 − c1)Op(h1)
k + Op(h̃3, j) + Op(h̃4, j), (A.6)

for some h̃3, j ∈ SG−r,−ρ
r,ρ which is equal to zero on supp c1 and h̃4, j ∈ SG− jr,− jρ

r,ρ . Now let c, b j and rk
be defined by the formulae

c(x, ξ) = ψ1,3(x)ψ2,3(ξ), Op(b j) = Op(c)Op(b̃ j) ∈ Op
(
SG(1/ω0)

r,ρ
)
,

Op(rk) = Op(c)Op(r̃k) ∈ Op
(
SG

(σ−kρ,−kρ/ω0)
r,ρ

)
.

Then

Op(b j) =
j−1∑
k=0

(−1)k Op(rk)

and (A.4)–(A.6) give

Op(b j)Op(a) = Op(c)Op(c1) + Op(c)Op(h̃1, j)

−
j−1∑
k=1

(−1)k Op(c)Op(1 − c1)Op(h1)
k + Op(c)Op(h̃3, j) + Op(c)Op(h̃4, j).

Since c1 = 1 and h̃3, j = 0 on supp c, and every element of Op(SG−∞,−∞
r,ρ ) maps continuously S ′ to S ,

we find

Op(c)Op(c1) = Op(c) mod Op(S ),

Op(c)Op(h̃1, j) ∈ Op
(
SG− jr,− jρ

r,ρ
)
,

j−1∑
k=1

(−1)k Op(c)Op(1 − c1)Op(h1)
k ∈ Op(S ),

Op(c)Op(h̃3, j) ∈ Op(S ),

and

Op(c)Op(h̃4, j) ∈ Op
(
SG− jr,− jρ

r,ρ
)
.

Hence, (A.3) follows for c j = c and some h j ∈ SG− jr,− jρ
r,ρ . By choosing b ∈ SG(1/ω)

r,ρ such that

b ∼
∑

rk,

the argument above shows that Op(b)Op(a) = Op(c) + Op(h), with h ∈ SG−∞,−∞
r,ρ = S , and (4) fol-

lows. The proof is complete. �
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