JOURNAL OF DIFFERENTIAL EQUATIONS | 卷:247 |
Global well-posedness of the critical Burgers equation in critical Besov spaces | |
Article | |
Miao, Changxing1  Wu, Gang2  | |
[1] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China | |
[2] China Acad Engn Phys, Grad Sch, Beijing 100088, Peoples R China | |
关键词: Burgers equation; Modulus of continuity; Fourier localization; Global well-posedness; Besov spaces; | |
DOI : 10.1016/j.jde.2009.03.028 | |
来源: Elsevier | |
【 摘 要 】
We make use of the method of modulus of continuity [A. Kiselev, F. Nazarov, R. Shterenberg, Blow up and regularity for fractal Burgers equation, Dyn. Partial Differ. Equ. 5 (2008) 211-240] and Fourier localization technique [H. Abidi, T. Hmidi, On the global well-posedness of the critical quasi-geostrophic equation, SIAM J. Math. Anal. 40 (1) (2008) 167-185] [H. Abidi, T. Hmidi, On the global well-posedness of the critical quasi-geostrophic equation, SIAM J. Math. Anal. 40 (1) (2008) 167-185] to prove the global well-posedness of the critical Burgers equation partial derivative(t)u+ u partial derivative(x)u + Lambda u = 0 in critical Besov spaces (B) over dot (1/p)(p,1)(R) with p is an element of [1,infinity), where Lambda = root-Delta. (C) 2009 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jde_2009_03_028.pdf | 255KB | download |