学位论文详细信息
Lagrangian Averaging, Nonlinear Waves, and Shock Regularization
Burgers equation;Hamiltonian partial differential equations;Lagrangian averaging;nonlinear waves;shock waves
Bhat, Harish Subrahmanya ; Marsden, Jerrold E.
University:California Institute of Technology
Department:Engineering and Applied Science
关键词: Burgers equation;    Hamiltonian partial differential equations;    Lagrangian averaging;    nonlinear waves;    shock waves;   
Others  :  https://thesis.library.caltech.edu/2089/1/BhatThesis_05_26_2005.pdf
美国|英语
来源: Caltech THESIS
PDF
【 摘 要 】

In this thesis, we explore various models for the flow of a compressible fluid as well as model equations for shock formation, one of the main features of compressible fluid flows.

We begin by reviewing the variational structure of compressible fluid mechanics.We derive the barotropic compressible Euler equations from a variational principle in both material and spatial frames.Writing the resulting equations of motion requires certain Lie-algebraic calculations that we carry out in detail for expository purposes.

Next, we extend the derivation of the Lagrangian averaged Euler (LAE-alpha) equations to the case of barotropic compressible flows.The derivation in this thesis involves averaging over a tube of trajectories centered around a given Lagrangian flow.With this tube framework, the LAE-alpha equations are derived by following a simple procedure: start with a given action, expand via Taylor series in terms of small-scale fluid fluctuations, truncate, average, and then model those terms that are nonlinear functions of the fluctuations.

We then analyze a one-dimensional subcase of the general models derived above.We prove the existence of a large family of traveling wave solutions.Computing the dispersion relation for this model, we find it is nonlinear, implying that the equation is dispersive.We carry out numerical experiments that show that the model possesses smooth, bounded solutions that display interesting pattern formation.

Finally, we examine a Hamiltonian partial differential equation (PDE) that regularizes the inviscid Burgers equation without the addition of standard viscosity.Here alpha is a small parameter that controls a nonlinear smoothing term that we have added to the inviscid Burgers equation.We show the existence of a large family of traveling front solutions.We analyze the initial-value problem and prove well-posedness for a certain class of initial data.We prove that in the zero-alpha limit, without any standard viscosity, solutions of the PDE converge strongly to weak solutions of the inviscid Burgers equation.We provide numerical evidence that this limit satisfies an entropy inequality for the inviscid Burgers equation.We demonstrate a Hamiltonian structure for the PDE.

【 预 览 】
附件列表
Files Size Format View
Lagrangian Averaging, Nonlinear Waves, and Shock Regularization 1873KB PDF download
  文献评价指标  
  下载次数:18次 浏览次数:15次