期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:403
The Lagrangian Averaged Navier-Stokes equation with rough data in Sobolev spaces
Article
Pennington, Nathan
关键词: Navier-Stokes;    Lagrangian averaging;    Global existence;   
DOI  :  10.1016/j.jmaa.2013.02.003
来源: Elsevier
PDF
【 摘 要 】

The Lagrangian Averaged Navier-Stokes equation is a recently derived approximation to the Navier-Stokes equation. In this article we prove the existence of short time solutions to the incompressible, isotropic Lagrangian Averaged Navier-Stokes equation with low regularity initial data in Sobolev spaces W-s,W-p(R-n) for 1 < p < infinity. For L-2-based Sobolev spaces, we obtain global existence results. More specifically, we achieve local existence with initial data in the Sobolev space H-n/2p,H-p(R-n). For initial data in H-3/4,H-2(R-3), we obtain global existence, improving on previous global existence results, which required data in H-3,H-2(R-3). (C) 2013 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2013_02_003.pdf 458KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:1次