期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:340
Well-posedness of the Cauchy problem for the fractional power dissipative equation in critical Besov spaces
Article
Wu, Gang1  Yuan, Ha1 
[1] China Acad Engn Phys, Grad Sch, Beijing 100088, Peoples R China
关键词: dissipative equation;    Cauchy problem;    well-posedness;    Besov spaces;    Fourier localization;    Littlewood-Paley theory;   
DOI  :  10.1016/j.jmaa.2007.09.060
来源: Elsevier
PDF
【 摘 要 】

In this paper we study the Cauchy problem for the semilinear fractional power dissipative equation u(t) + (-Delta)(alpha)u = F(u) for the initial data u(0) in critical Besov spaces B-2,r(sigma) with sigma ((Delta)) double under bar n/2 - 2 alpha-d/b, where alpha > 0, F(u) = P(D)u(b+1) with P(D) being a homogeneous pseudo-differential operator of order d E [0, 2ot) and b > 0 being an integer. Making use of some estimates of the corresponding linear equation in the frame of mixed time-space spaces, the so-called. mono-norm method which is different from the Kato's double-norm method, Fourier localization technique and Littlewood-Paley theory, we get the well-posedness result in the case sigma > - n/2. (c) 2007 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2007_09_060.pdf 162KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次