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1. Introduction

We consider the Burgers equation with fractional dissipation in R,

o —
{8tu+uaxu+A u=0, (11)

u(x,0) =uop(x),

where 0 < o <2 and the operator A% is defined by Fourier transform
F(A%u) () = €1° Fu(é).
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The Burgers equation (1.1) with &« =0 and o = 2 has received an extensive amount of attention
since the studies by Burgers in the 1940s. If « = 0, the equation is perhaps the most basic example
of a PDE evolution leading to shocks; if o = 2, it provides an accessible model for studying the inter-
action between nonlinear and dissipative phenomena. Recently, in [14] for the periodic case authors
give a complete study for general « € [0, 2], see also [3,10,13,16]. In particular, for & = 1, with help
of the method of modulus of continuity they proved the global well-posedness of the equation in the
critical Hilbert space H? (T).

In this paper, we study the following critical case,

0fU + uoyu + Au =0, (1.2)

u(x,0) =up(x). i

We use similar arguments as in [1]. Making use of Fourier localization technique and the method of

modulus of continuity [14], we prove the global well-posedness of the critical Burgers equation (1.2)
1

in critical Besov spaces B;l(R) with p € [1, ).
1

It is well known that 35_1 is the critical space under the scaling invariance. That is, if u(x,t) is a
solution of (1.2), then u; (x,t) = u(Ax, At) is also a solution of the same equation and |[u; (-, t)] ! ~
B
p.1
luG, 201 1 .
BP
p.1
Now we give out our main results. The first main result is the following:

1
Theorem 1.1. Let ug € B; 1 (R) with p € [1, 00), then the critical Burgers equation (1.2) has a unique global
solution u such that

.1 .1
u EC(R+; B;,l) n L;OC(R-'—; B;,l )

Remark 1.1. Because of the restriction of the smooth index s stemming from the a priori estimate for
the transport-diffusion equation (see Theorem 1.2), we cannot get the result for the limit case p = oco.

Remark 1.2. In [2], N. Alibaud constructed a unique weak solution to (1.1) for any « < 1, but the

author did not shown whether the solution is smooth. Our Theorem 1.1 ensures that the solution is

smooth for o = 1. In fact, since regularity is a local property, making use of the smoothing effect
1

(4.4) and the embedding Bg’l < L°°, we can get that for any t > 0, u(-,t) € C*°(R). Moreover, from
Eq. (1.2), we find that

u(x,t) € C*(R x R™),
which implies that the solution is smooth in space and time.

Remark 1.3. The corresponding question for the quasi-geostrophic equation has been a focus of sig-
nificant effort (see e.g. [1,5,6,9,15,20]) and the critical Q-G equation has been recently resolved in
[15] for periodic case. Based on [15], Abidi and Hmidi in [1] and Dong and Du in [9] give the corre-
sponding result for Cauchy problem of the critical Q-G equation in the framework of Besov space and
Sobolev space, respectively. After the present paper is completed, Prof. . Wu and H. Dong informed
us that the authors in [10] gave the global well-posedness for the critical fractal Burgers equation in

inhomogeneous space H? by similar argument in [9].
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In order to prove this theorem, we first prove the local well-posedness which is the major part of
this paper. Next we make use of the modulus of continuity [14] to get the global well-posedness. We
mention that the property allowing us to remove the periodicity is the spatial decay of the solution.

The key to prove the local well-posedness is an optimal a priori estimate for the following
transport-diffusion equation in RVN:
ou+v-Vu+vA®u=f,

{ u(x. 0) = up(v). (v

where v is a given vector field which needs not to be divergence free, ug is the initial data, f is a
given external force term, v > 0 is a constant, 0 < o < 2. Our second main result is the following:

Theorem 1.2. Let 1 < p1 < p <00, 1< p<pr<ooand1<r < oo Lets € Rsatisfy the following

N
s<1+— <ors 1+—1fr_1)
p

P1

1 1 1 1
s> Nmm(— —/) (ors>—1—Nmin(—,—/>ifdivv:O).
p1 p p1 p

There exists a constant C > 0 depending only on N, «, s, p, p1 and r, such that for any smooth solution u of
(TD)y o with v > 0, we have the following a priori estimate:

1
Vil g < CeXD (ugllgy +v7i 171, Wm) (13)

g
T p.r
with Z(T) == [ IVv(®)l| x dt.

p P1 00

pq,00

Besides if u = v, then for all s > 0 (s > —1 if divv = 0), the estimate (1.3) holds with Z(T) =
Jo IV V(@) e de.

Remark 1.4. When o« = 2, the above a priori estimate has been proved by R. Danchin in [7], where
the method used has been introduced by T. Hmidi in [11]. In this paper, we extend Danchin’s results
to the general case « € [0, 2]. The proof’s key is the use of Lagrangian coordinates transformation
together with an important commutator estimate.

The rest of this paper is arranged as follows:

In Section 2, we recall some definitions and properties about homogeneous Besov spaces, and we
will also list some useful lemmas. In Section 3, we prove Theorem 1.2. In Section 4, we prove the
local well-posedness. In Section 5, we give the blow-up criterion. In Section 6, we complete the proof
of the global well-posedness.

Notation. Throughout the paper, C stands for a constant which may be different in each occurrence.
We shall sometimes use the notation A < B instead of A < CB and A ~ B means that A < B and
B < A.

2. Preliminaries
Let us first recall the Littlewood-Paley theory. Let x and ¢ be a couple of smooth radial functions

valued in [O 1] such that x is supported in the ball {£ e RN | |&| < %}, @ is supported in the shell
{geRV|3< 5<%} and
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XE+) ¢(27%) =1, VeeRN,

qgeN

Yo%) =1, VeeRN\{0}.

qe’
Denoting ¢q4(&) = ¢(279¢) and hg = _7-"*1g0q, we define the homogeneous dyadic blocks as
Aqu:=p((279D)u = / hgux—y)dy, VqeZ.
RN

We can also define the following low-frequency cut-off:

Definition 2.1. Let S; be the space of temperate distributions u such that

lim Squ=0, inS"

q——00

The formal equality

u=> Aqu

qeZ

holds in S;, and is called the homogeneous Littlewood-Paley decomposition. It has nice properties of
quasi-orthogonality:

AgAqu=0 if|g—q|>2 and Ay(Sq_1ulqv)=0 if|q —q|>5. (21)
Let us now define the homogeneous Besov spaces:
Definition 2.2. For s € R, (p,r) €[1,00]% and u € 8/1, we set

1
;

lull s, = (qu”nAqun{p) if r < oo,

qeZ

and
lullgs = sup2%|Aquliss.
p.,oo
qeZ
We then define the homogeneous Besov spaces as

By = {u eS| g, <oo).
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The above definition does not depend on the choice of the couple (x, ¢). Remark that if s < % or

s= % and r =1, then B; » is a Banach space.
We now recall some basic properties of the homogeneous Besov spaces.

Proposition 2.1. The following properties hold true (cf. [17,18]):

1. Generalized derivatives: Let o € R, then the operator A° is an isomorphism from B;,r to B;}”.
. . . s—N(-—-L)
2. Sobolev embedding: If p1 < p2 and r1 < 1y, then Bin,n — Bp, 1, LU

3. If (p,1) €[1,00]% and s > 0, there exists a positive constant C = C(N, s) such that

luvilgs < C(Iulslvilgy + Vi lulz ).

In our next study we require two kinds of coupled space-time Besov spaces. The first one is de-
fined by the following manner: for T > 0 and p € [1, co], we denote by L‘T’B;r the set of all tempered
distribution u satisfying

T

lullzss, = H (qu“lmqunzp)

qeZ Ly

< OoQ.
P

The second mixed space is Z/;B;,r which is the set of all tempered distribution u satisfying

F
. . qsr | A r
lullze s, .—(Zz ||Aqu||L¢Lp> < oo,

qeZ

Let us remark that, by virtue of the Minkowski inequality, we have
lullzess < llullegs  if p<r,
and
“u”L/T)Bfm S Hu”[_fr’gir ifp>r.
Now we give some useful lemmas.

Lemma 2.1. (Cf [12,19].) Let ¢ be a smooth function supported in the shell {€ € RN | Ry < |] < Ra,
0 < R1 < Ry}. There exist two positive constants k and C depending only on ¢ such that for all 1 < p < oo,
T > 0and A > 0, we have

[¢ ("' D)e™ " ull < Ce™ ¥ [ ¢ (T D)ul] -

Lemma 2.2. (Cf. [7].) Let v be a smooth vector field. Let v be the solution to

t

lﬁt(X):X-l-fv(r,l//f(x))dr.

0

Then for all t € R, the flow v, is a C! diffeomorphism over RN and one has
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[V | e <",

[Vt —1d] o <O -1,

t
V20 | <70 [ 92000 e P,
0

where V (t) = 5 [Vv(T) | dz.

Lemma 2.3. (Cf. [4].) Let v be a given vector field belonging to L}OC(R+; Lip). For q € Z we set ug := Aqu and

denote by rq the flow of the regularized vector field Sq,1 v. Then foru € Bg,oo witha €[0,2) and p € [1, o]
we have

| A% (g o ¥rg) — (A%uq) 0 Y| < Ce<OVIE (2% g,
where V (t) = fot IVv(T)||te dT and C = C(«, p) > O is a constant.

Lemma 24. et 0 € R and 1 < p < p1 < o0, pa == (1/p — 1/p1)~". Let Rg := (Sq1v — v) - VAqu —
[Aq, v - V]u. There exists a constant C = C(N, o) such that

2"“||Rq||Lp<C( D 1Sga V297 | Agul
lg'—ql<4
+ ) 2T Ay Vv 129 || Aqul o
q'2q9-3
@) ~1=35) 4 50 A "o A
+ ) 2 220 | Ag Vv e 2977 | Agrut e
la'—ql<4

q//gq/_Z

—d in(L 1
+ z : 2(q q)(0+Nm1n(p],p/))
q'>q9-3
lg"—q'1<1

' N . . ” .
x 2901 (2970 | Ag Vv|por + [[Ag div|pe )27 "||Aq,,u||Lp),
and the third term in the right-hand side may be replaced by

C > 27O VIAg VY 1 Sg-1Vullp.
g’ —qI<4

Besides if u = v, the following estimate holds true:
29| Ryl < C( > 1Sy Vulls2T [ Aqulle + Y 2979 | Ag Vul| 1297 || Aqulirp
lg'—ql<4 q'2q9-3
+ Y 200170 | Ay Vil + | Ag divu < )29 qu//uan).

q'>q-3
lg"—q'1<1
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R. Danchin in [8] gave the proof for the nonhomogeneous case. For the convenience of the reader,
we will give the proof for the homogeneous case in Appendix A.

3. Proof of Theorem 1.2

Proof of Theorem 1.2. Here we only prove the case « € [0, 2) (for the case o =2, see [7]).
Let ug := Aqu and f; := Aqf. Applying A4 to (TD), o yields

dettg + Sq_1v - Vug +vA%uqg = fg + Ry
with Rg:= (Sq_1v — V) - Vg — [Ag, v - Vu.

_ Let yq be the flow of the regularized vector field Sq_1v. Denote g := ug o ¥yq, j_”q = fqoyyg and
Rq :=Rq o q. Then we have

dilg +VA%ilg = fg + Rqg+1Gq (3.1)

with Gg := A%(ug o ¥rg) — (A%Ug) o Yq.
Applying Aj to (3.1) and using Lemma 2.1, we get

t
AT —kvt2e A —KkV(t—T)20%
|89 |0 £ 1 uaglio + [ e

0
x (1A fqllr + 1AjRqlIe + VI AjGglirp) dr. (3.2)
Now from Lemma 2.3 we have
|A;Gq®)], < CeCYOVI=F ()29 ug]ir. (3.3)

According to Bernstein lemma and Lemma 2.2, we can get

[Aifa® | S27IVA; follee

S277[(Vfg) o W | 1o 1V gl
1

S22V Sglle 1y 1 P IV ¥l

< eV O follp. (3.4)

Arguing similarly as in deriving (3.4), we obtain

[AjRq®) ], < eV ©207T || Ryl

~

According to Lemma 2.4, we get
[AjRG(©O)],p S eV 027 Icq)27 2/ (1) Ju®) | B, (3.5)

with ||Cq(t)||gr =1.
Plugging (3.3), (3.4) and (3.5) into (3.2), taking the L® norm over [0, t] and multiplying both sides

1 a .
by vr 2965) e obtain
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1 s+ <% T G=pe _ t2do 1 .
v 2T Al S20 7 (1—e ) P25 A jug gl

1

+v "2

43

@-HA+5+25) ats—-r)
P eCVy 2 ”fq”Lf]LP

+U%2q<s+%>2(q—j>aecv<t>vl—%(r)“uq”LpL,,
t
t
+2<‘H><1+%>fcq(r)z’(r)ec‘“” “”(””B;.rdt’ (3.6)
0

Let Mg € Z to be fixed hereafter. Decomposing

. _ 1 - 1
uq:Sq,Mquotpq + Z Ajuqowq ,
j2q—Mo

we have for all t € [0, T],
lugllpp o < er<”(\|Sq7M0ﬁq||Lpr + ) ||Ajaq||Lng>. 3.7
jZ2q—Mo

By Lemma A.1 in [7], we have

1
1Sq-moilglie S 11yl 27NV ot el v e + 2740 [ Vg | ) lugle.

This together with Lemma 2.2 and Bernstein lemma leads to
¢ = < SCV() (,CV () _ —Mp
ISq-moilqllyppp Se= (e 1+27Y0) [lugll o - (38)

As Ajugq =0 for |j—q| > 1, from (3.6) we get

1 o

5206+ A &
Yo v TN Aigllye
Jj=q—Mp

1 -1 qGs—
< (1 — e—KVPtzqa) P28 |ug glle +v Mo (1+0) ,CV (£)

~

)
~1 ||fq||,_[/’1 Lp

. o
+ 07 2Mo@ e CV Oy 1=5 (1)296H )y, lore

t
+2M0(1+‘”)/Cq(r)Z/(r)eCV(r)||U(T)||B§rdf- (3.9)
0

Plugging (3.8) and (3.9) into (3.7) yields that
1 o a1
v;zQ(5+§)||Uq”LfLP < C(1 _ g—Kvpt2d )ﬂ2q5||uo,q||uv

1 o
-1 q(s—-7)
+CeCV(f)<v £ gMo(+@) 5™y I fqll o1 o
t
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a 1 a
+ (27Mo 4 2Mor v 13 () v 2 27 Jugll
t

+ 2Mo(1+a) / (0 Z' (D) |Ju@)| B, dt).

0

Choose My to be the unique integer such that 2C2~Mo ¢ (%, }l] and Tq to be the largest real number
such that

o

2—M()Ot ﬁ
T{<T and CV(T1)<Co with C0=min(ln2,< ) )
8C2

Thus for t € [0, T1], there exists a constant C; such that

1 s+ 9 _ qoy L
V727 B ugl oy, < o[ (1= e )0 2% ug g1

t

- _qs—%)
+v A2 A ||fq||Lf1Lp+/Cq(f)Z’(T)”u(f)HB;rdf).
0

Taking ¢" norm yields

t

1 -
volull_, e <Cif lluollys, +v “IfIl oo +/Z/(T)HU(T)HBs dr |. (3.10)
L[ Bp,r p. Zf] Bp rﬂ] 5 p.r

Splitting [0, T] into m subintervals like as [0, T1], [T1, T2] and so on, such that

Tiet1
C / Vv dt ~ Co.

Tx
Arguing similarly as in deriving (3.10), we get for all t € [Ty, Tk+1],

t

- +/Z (t)||u(r)||B;r dr).

1

1 -7
ST — <cl(|u<Tk>||B;r+v i
il By, i

[T.t1Pp.r Tt

By a standard induction argument, it can be shown that

t

1 _1
= k ‘1 7
Vol see <CT | Nuollgs, +v MIFIL e +/Z/(T)|}U(T)Hgsrdf :
£ | NG "

Since the number of such subintervals is m &~ CV(T)C-!, one can readily conclude that up to a change
of C,

T
1 -
vPull, e <Ce D uollgs +v AIfI e +/Z/(t)||u(f)”gsrdf : (311)
LyBpr : »[;T)] Bp,rpl ; P
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Of course, the above inequality is valid for all p € [p1, oo]. Choosing first p = oo in (3.11) and applying
Gronwall lemma leads to

1
lullzse g, < Ce““ D (Jlugllzy  +v71 71, e o) (3.12)

Now plugging (3.12) into (3.11) yields the desired estimate for general p. O
4. Local well-posedness

In this section, we prove the following result:

1
Proposition 4.1. Let ug € 35,1 (R) with p € [1, 00), then there exists T > 0 such that Eq. (1.2) has a unique

solution u such that
1

1
. —+1
Toop P 1pp
uely Bp 1NLrBy;

1
o L1y
Besides for all 8 € RT, we have tPu e L?OBﬁ,lﬂ'

Proof. We prove this proposition by making use of an iterative method.

Step 1. Approximation solution.

—tA

Let u% :=e~t4ug(x) and let u™! be the solution of the linear equation

deu™ +u" ! 4+ Autl =0,
u™1(x, 0) = up(x).

.14
Obviously u® € LT(R™; B;_] ), thus according to Theorem 1.2, we have Vn € N,

1

u" e I®(RT; B ) ML (RY; B" ).

Step 2. Uniform bounds.

Now we intend to obtain uniform bounds, with respect to the parameter n, for some T > 0 inde-
pendent of n.

By Lebesgue theorem, there exist T > 0 and an absolute constant gy € (0, min{—15 ) such that

4Cz7 2}

1
3 (1 -T2 225 | Aquollie < eo. (41)
qeZ

By making use of Lemma 2.4 and similar arguments as in the proof of Theorem 1.2, for all T > 0 such
that

T

Jlr@l ;.dar<cc
BP'1

0
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and
||U”H~ 1,1 <2Ce,
BP 2
T p.1
we have
+1 +1
Ju" ||I?B§]+%+””" b
<ey (- )2k iAquolis +Cur] gy Iy
qeZ f pl B; 2
Therefore, from the inequality C|ju™|| . 11 < <2C2%gp < % we find that
BP
Jut! \L 1oy 1 <2Ce0 < CCo. (4.2)
B; 135’

1
On the other hand, by Theorem 1.2 and the Sobolev embedding B;J < L*°, we have

.
Clo I"@I 1, dt

n+1 ”~ < Ce

Pl
L“Blf

< Clluoll, 1
B,
Combmmg the above results, we have proved that the sequence (u"),en is uniformly bounded in

+1
1
L‘T’OB” mLTB;;]

Step 3. Strong convergence.

1
We first prove that (u")pen is a Cauchy sequence in LY Bl’j 1
Let (n,m) e N2, n>m and u™™ :=u" — u™. One easily verifies that

3tun+l,m+l + unaxun+1,m+1 + Aun+1,m+l — _un,maxum—o—l,
un+l,m+1 (X, 0) —

According to Theorem 1.2, we have

Cllu™ H .

cce / Jum a1 o |

Hun+1.m+1 H~

1
cop P
LT Bp,l

dr. (4.3)

1
BP
P

1
By Proposition 2.1 and the embedding 35,1 < L°°, we have

o™y Sty g

p p.1 p.1

Substituting this into (4.3) yields
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Cllu® H .

<clum e / TRCIRRE

p.1

” n+1 m+1 ”~oc %
LE B

By (4.1), we can choose g9 small enough such that

Hun—H ,m+1 H~ 1 <e ”un ,m “ 1
I¥8), B;
with € < 1. Now we can get by induction
“un+l m+1 ”~ ;< emtl Hun,OH~ ;< Cemtl luoll 1
I¥8,, I¥B,, By,

1 .1

This implies that (u™)nen is a Cauchy sequence in L°°B > - Thus there exists u € L"OBI’J”l such that u"
R | 11 .

converges strongly to u in L?"B . Fatou lemma and (4.2) ensure that u € L}B;’1 Thus by passing

to the limit into the approximation equation, we can get a solution to (1.2) in L‘;O 35,1 Al L}B;]
Step 4. Uniqueness.

Let uq and uz be two solutions of Eq. (1.2) with the same initial data and belonging to the space

f?’B;l NLl B” . Let uq 3 :==uy — uy, then we have

Oflq,2 + U10xUi1,2 + AUp 2 = —U7 20xU2,
u1,2(x,0) =

By similar arguments as in Step 3, we have
Clluq |l 14
lurall . 1 <C by /||u12|| 1 u2@| 1y, de
I8, o By
Gronwall’s inequality ensures that uy = uy, Vt € [0, T].
Step 5. Smoothing effect.

We will prove that for all 8 € R, we have

CB+HDIull 1
L13p+]
[€7ul s < Co e full g (44)

P
P T "p1

It is obvious that

3 (tPu) + udx(tPu) + A(tPu) = ptP~Tu
(tPu)(x,00=0
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When g =1, by Theorem 1.2, we have

Clull 1,

Htu(t)” L<Ce rqu
Ly p1 LL;OB;J

Suppose (4.4) is true for n, we will prove it for n + 1. Applying Theorem 1.2 to the equation of t"t1u

yields that

CHUH p+1
1
[ O] one <CmtDe T u] g,
T pl LT Bp,l
Cn+2)lull
nglﬂ
< Cre Pl
L%OBp,l

For general 8 € R, obviously [8] < 8 < [B] + 1. Thus by the following interpolation

[B] 1 ﬂ B—18]
[ePul. 3+ <Hf“3]u|\ . Ht“‘”“u! b’
p,l pl pl

we can get the estimate for general 8 e RT. O
5. Blow-up criterion

In this section, we prove the following blow-up criterion:

Proposition 5.1. Let T* be the maximum local existence time of u in f‘T’OB n LlTBl’j 1 IfT* < o0, then

T*
/ ()] dt = 00
0

Proof. Suppose fOT* [loxu(t) ||~ dt be finite, then by Theorem 1.2, we have

Veelo,T"), ||u<t>}|3% < M= CeClo IOty 1 oo, (5.1)
p.1

1
P
P
Let T > 0 such that

d(1- e T2  Mr < g0, (5.2)
qez

where &g is the absolute constant emerged in the proof of Proposition 4.1. Now (5.1) and (5.2) imply
that

veel[o. T, Y (1- <123} [Aqu®],, <eo
qeZ
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This together with the local existence theory ensures that, there exists a solution TJ(Q on [0, T) to
(1.2) with the initial datum u(T* — T/2). By uniqueness, U(t) = u(t+ T* —T/2) on [0, T/2) so that U
extends the solution u beyond T*. O

6. Global well-posedness

In this section, making use of the method of modulus of continuity [14], with help of similar
arguments as in [1], we give the proof of the global well-posedness.

1
Let T* be the maximal existence time of the solution u to (1.2) in the space L*°([0, T*); B;.l) n

.1l . .
L} ([0, T*); B;,l ). From Proposition 4.1, there exists To > 0 such that

Ve € [0, Tol, tfdu(®)] o < CHuOHB

1
p
p.1
Let A be a positive real number that will be fixed later and T; € (0, Tg). We define the set
I:'={T €[T1,T*); Vte[T1,T], Vx#y eR, [uxt) —u(y, 0] <w,(x—yl)},
where @ : RT — R* is strictly increasing, concave, w(0) =0, »’'(0) < 400, limg_, o+ @”(§) = —oco and

;. (1x = y|) = w(rlx — yI).

The function w is a modulus of continuity chosen as in [14].
We first prove that T; belongs to I under suitable conditions over A. Let Co be a large positive
number such that

2|lug Iz < @(Co) < 3|luo]lre~. (6.1)

Since w is strictly increasing, then by maximum principle (refer [2]) we have

Mx—yl>Co = |ukx T1)—u(y, T)| <2luolie < wi(lx— yl).

On the other hand we have from Mean Value Theorem

lux, T1) —u(y. Ty)| < [x — yl||oxu(T1) | -

Let 0 < §p < Cp. Then by the concavity of w we have

w(3o)
Mx—yI<8 = wp(lx—yl)= 5, XL
If we choose A so that
3o
A> ——[au(TD) | s
> w(ao) H X ( 1)HL

then we get

0<Alx—yl<d = |ux Ty —u(y,T)|<wi(lx—yl).
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Let us now consider the case §p < A|x — ¥| < Co. By Mean Value Theorem and the increasing property
of w, we can get

C
|u(x,T1>—u(y,T1)|<7°||axu<m}|w and  w(80) < w; (1x — yI).

Choosing A such that

Co

A>——
@(80)

[0xu(T1) | oc
thus we get

So<AX—YI<Co = |u T —uy,Ty|<wo(lx—yl).
All the preceding conditions over A can be obtained if we take

_ @ 'Glluollr~)

oxu(T o~ 6.2
T e (62)

From the construction, the set I is an interval of the form [Ty, T,). We have three possibilities
which will be discussed separately.

Case 1. The first possibility is T, = T*. In this case we necessarily have T* = oo because the Lipschitz
norm of u does not blow up.

Case 2. The second possibility is T, € I and we will show that is not possible.

Let Cy satisfy (6.1), then for all t € [Ty, T*), we have
AMx—yl=2Co = |u@x.t)—uy.0)|<w(x—yl).

1
Since oxu(t) belongs to C((0, T*); B;J), then for ¢ > 0 there exist ng, R > 0 such that Vt € [T, Ty +
1ol

loau(®)] o0 < 0T o + &

P
5 and |‘3x”(T*)”L°C<B§0,R,><§’

where B g) is the ball of radius R and with center the origin. Hence for Alx — y| < Co and x or

yE BEO R0y’ we have for Vt € [Ty, T« + 1o]
R+

u, ) —u. O] < K= yI3® | e, <X

On the other hand we have from the concavity of @

w(C
Mx—yl<C = 2O

AMx—yl <wi(lx—yl).

Thus if we take ¢ sufficiently small such that
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w(C
e - ( 0))\7
Co
then we find that
AMx—y|<Co; xo0rye BEO,R+C;—?) = |ux. ) —uy. 0| <o (x—yl).

It remains to study the case where x,y € B ) Since |\8fu(T*)||Loo is finite (see Proposi-

O.R+
tion 4.1) then we get for each x e R

|axu(x, )| < Aa (0).

From the continuity of x — |dxu(x, T4)| we obtain

[| (T ) < A’ (0).
)

)HLOO(B(O.R+%Q

Let §; < 1. By the continuity in time of the quantity |dxu(t)|r~, there exists n; > 0 such that
Vte [Ty, Ty + 771]

w(s
 <i (81)
R+CTO) 1

[ERIG] LB
o

Therefore for A|x — y| < &1 and x # y belonging together to B(0 Ry Coy W have for all t € [Ty, T, + 1]

A

u, ) —u, O] < Ix = I u©) oo 5
(0,

R+CT°))
w(§
<Ax—y] (61)
81
<wi(lx—yl).
Now for the other case since
Y.y €B oy S <Ax=yl uG T —uy. To)| < wi(lx = yl).
’ A

then we get from a standard compactness argument the existence of 1, > 0 such that for all
te[T, Ti+ 772]

Vx.y€B, 51 < Alx—yl; lux, t) —u(y. )| < w(1x— yl).

0.R+2)°
Taking n = min(#no, 11, 12), we obtain that T, + n € I which contradicts the fact that T, is maximal.

Case 3. The last possibility is that T, does not belong to I. By the continuity in time of u, there exist
X # y such that

ux, Ty) —u(y, To) = w(§), with & =|x—y|.
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We will show that this scenario cannot occur and more precisely:
f(Ty) <0 where f(t):=u(x,t) —u(y,t).
This is impossible since f(t) < f(T4), Vt € [0, T,].

The proof is the same as [14] and for the convenience of the reader we sketch out the proof. From
the regularity of the solution we see that the equation can be defined in the classical manner and

fI(T) =u(y, Ty, Te) — ux, T3, Ti) + Au(y, To) — Au(x, T.).

From [14] we have

u(y, T)oxu(y, Tx) — ux, To)dxu (X, To) < 0 (§)w; (§).
Again from [14]
¢

b
Au(y, Ty) — Au(x, Ty) < %[ ;. (§ +21n) +w,\r§§ —2n) = 2w, (£)

dn

0
L1 76%(277 O 021 -6~ 2008
T
%

n2
SAJ(A8),
where
£
1 2 —2n)—2
](S):_/w@%- 77)+w($2 n) —2w() dn
T n
0
+l/w(2n+$)7w(22n*§)*2w(§) dn.
T n
£
2
Thus we get

(T <Moo + 1) ().

Now, we choose the same function as in [14]

%‘ .
w(E) = Tan JRE’ if 0 <& <&,
Cg logs, if & > o,

here & is a sufficiently large number and Cg, is chosen to provide continuity of w. It is shown in
[14],

VE#A0, w®aw'(€)+ ) <0,

Thus we can get that f/(T,) <0.
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Combining the above discussion, we conclude that T* = oo and

Vt € [Ty, 00), [l3xtt]lie < Aw'(0) = 2.
The value of A is given by (6.2).
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Appendix A. Commutator estimate

In this appendix, we give the proof of Lemma 2.4.
By Bony’s decomposition, we have

Rg=(Sq-1v —v) - VAqu —[Aq,v-V]u
=[Tys, Aqldju + Ty 5, v = AqTouv’
+ {8 R(v. Aqu) = 8jAqR(v), u)}
+ {AqR(divv,u) — R(divv, Aqu)}
+ (Sq,lv —Vv)- VAqu
=:Ry+ Ry + R} + Ry +R) +RY. (A1)

Above, the summation convention over repeated indices has been used. The notation T stands for
homogeneous Bony’s paraproduct which is defined by

Tre:=Y 5 1fAgg.
q'el

and R stands for the remainder operator defined by

RUF.&) =) Agf(Ag_18+Agg+Agi19).
q el

Note that

1Ay Vvl ~29 |Agvie, Vae[l,o0l, ¢ €Z. (A2)

Now let us estimate each term in (A.1).

Bounds for 297 || R,‘l [lLr. By (2.1) and the definition of Aq, we have

Ri= Y [Sgoivi, Aglajaqu
lg'—ql<4

= Z /h(y)[Sq/_1 vi(x) — Sq_1vi (x = 279y)]9;Aqu(x — 27%y) dy. (A3)
0/ —a1<4 g
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Applying Mean Value Theorem and Young’s inequality to (A.3) yields

29 |RY 1, <C Y 18q1 VY27 | Agu .
lg'—ql<4

Bounds for 29° ||R§ [lLe. According to (2.1), we have
RE= Y Sy10jAquigv.
q'>q-3
By (A.2), we can get
272, <C Y0 27 g vV ISg 10y Aqul
q'>q-3

<C Y 27T Ay V2% | Aqu .
q'>q-3

Bounds for 29 | R3 || L». Again from (2.1), we have

Rg =— Z Aq(sqf,lajquij) =— Z Aq(Aq//ajquij).
lg'—ql<4 lg'—q|<4
q"<q'-2

Therefore, denoting % =1_

=3 and taking advantage of (A.2), we can obtain

1
pr
27|Rflp <C Do 29 Ag vy I1Agrdjullyr

q
Iq”’fq\§4
q"<q' -2

Y o—1-Ny g N P
<c Y 29T AV 5 297 | Agrullie.

Iq”’fq\/<4
q"<q' -2

Note that, starting from the first equality of (A.6), one can alternately get

27|R3ll <€ Y 297 Ag v | oy I1Sg—1djulle
lq'—ql<4

<C Y 29O VALY 1S _1djullpee.

lg'—qI<4
Bounds for 29 || Rg || e .
Ry = > 0j(AgvIAgAgu)— > 9jA(AgvI Agu)
Iq//’fq\<2 q'>q-3
lg"—q'I<1 lg"—q'I<1

—. p4.1 4,2
= R}1+ RE2.

1691

(A5)

(A7)

(A8)
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By (A.2), we can get

» . -
29REM, <C Y 1A VY277 [ Aguli
lg'—q|<2
lg"~q'I<1
/N, ’ .
<C Y 2T Ag VI 277 [ Agrul.

l9'~q|<2
lg"—q'I<1

For Ré’z, we proceed differently according to the value of % + ;—1. If % + pl_l
1,1
> T p; and have
(ML _Ny . .
2040 ”Ré‘ZHLP <C Z 24(1+0) 55— ||Aq’VAq”U||LP3
q'>q-3
lg"—q'I<1
N
1 957 11 A i
<C Y 2902 Ay v | Agruliee

q'>q-3
lg"—q'I<1

@) (1+o+35) a0 55 4 Iy
<C Y 2 P20 | Ag VY Ipm 297 | Agrulle .

q'>q-3
lg"—q'I<1

If % + P]_l > 1, taking p; = p’ in the above computations yields
N
971 A A
2Ry <€ 3o 2TV NAgvAGuly
q'>q-3
lg"-q'I<1
N
1 a7 A A
<C Y 29T A vl | Agrule

q'>q-3
lg"—q'1<1

@-q)A+o+3) 0 3% 2 oy
<C Y pA 2T || Ay Vv 10 297 | Agrullpe .

q'>q-3
lg"—q'I<1

Putting (A.9), (A.10) and (A.11) together, we obtain

—q in(-L+1

200 ”Rg“u? <C Z 9@=@)(A+o+Nmin(z:+ 7))
q'>q-3
lg"—q'I<1

PN ’ .
x 2120 | Ag VVlpe 29 | Agrutll e

Bounds for 299 || Rg [lLr. Similar computations yield

2% “Rg HLP < C Z Z(Q*q/)(0+Nmin(ﬁ+i))
q'>q-3
lg"—q'1<1

/N . A
x 271 || Ag div v o 27 | Agrullpe.

< 1, we denote P3

(A.9)

1

(A.10)

(A11)

(A12)

(A13)
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Bounds for 299 || Rg llLp.

6 . .
Rq =— Z Agv-VAqu,
q'>2q-1
thus by Bernstein lemma, we have
29 RS|,, <C Y 297V Ag Vvl 29 | Aqullpe. (A14)
q'2q-1

Combining inequalities (A.4), (A.5), (A.7) or (A.8), (A.12), (A.13) and (A.14), we end up with the
desired estimate for Rg.

Straightforward modifications in the estimates for R2, R;‘ and RZ leads to the desired estimate in
the special case where u =v.
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