期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:407
Mean separations in Banach spaces under abstract interpolation and extrapolation
Article
Kryczka, Andrzej
关键词: Banach sequence lattice;    Kothe-Bochner space;    Banach-Saks property;    Interpolation method;    Extrapolation method;    Abstract logarithmic space;   
DOI  :  10.1016/j.jmaa.2013.05.037
来源: Elsevier
PDF
【 摘 要 】

We introduce the mean separation for bounded sequences in Banach spaces and the related seminorm for bounded linear operators. The introduced quantities are closely related to the geometric characterizations of the Banach-Saks property and the alternate signs Banach-Saks property. We investigate the behavior of the mean separations for a class of operators between vector-valued Banach sequence spaces E(X-v), providing that a Banach sequence lattice E has the Banach-Saks property. We estimate the mean separations for operators under abstract interpolation and extrapolation methods. In particular, we obtain quantitative and qualitative results on the heredity of the Banach-Saks properties under these methods. (C) 2013 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2013_05_037.pdf 430KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次