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a b s t r a c t

We introduce themean separation for bounded sequences in Banach spaces and the related
seminorm for bounded linear operators. The introduced quantities are closely related
to the geometric characterizations of the Banach–Saks property and the alternate signs
Banach–Saks property. We investigate the behavior of the mean separations for a class of
operators between vector-valued Banach sequence spaces E(Xν), providing that a Banach
sequence lattice E has the Banach–Saks property. We estimate the mean separations for
operators under abstract interpolation and extrapolationmethods. In particular, we obtain
quantitative and qualitative results on the heredity of the Banach–Saks properties under
these methods.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The distances between various combinations of sequence elements are used in the geometric descriptions of several
properties of Banach spaces and operators. For instance, the close packing of equal spheres in Banach spaces can be
characterized by Kottman’s constant [23] which employs the separated elements of sequences in the unit ball. A similar
idea applied to bounded subsets of a Banach space leads to the separation measure of noncompactness and the related
seminorm for operators (see [1,2]). Reflexivity of spaces and weak compactness of operators are geometrically described by
James’ condition [20] on the separated convex hulls of sequence elements (see also [27]). The mean separations, which we
consider in this paper, appear in the context of the Banach–Saks property and its variant with alternate signs. Recall that
a bounded linear operator T acting between Banach spaces X and Y has the alternate signs Banach–Saks (ABS) property, if
every bounded sequence (xn) in X contains a subsequence (x′

n) such that the Cesàro means of ((−1)nTx′
n) converge in Y .

If in this definition ((−1)nTx′
n) is replaced by (Tx′

n), then T is said to have the Banach–Saks (BS) property. The ABS and BS
properties of a Banach space X are defined by the respective property of the identity operator on X .

A naturally arising question is the heredity of properties of a Banach space X by the spaces built on X or by operators
between such spaces. The problem for the BS propertywaswidely studied. Partington [38] proved that direct sums of Banach
spaces preserve the BS property, if the sums are built on a Banach spacewith a hyperorthogonal basis and the BS property. In
particular, the BS property passes from X to lp(X) with 1 < p < ∞. Bourgain [16] constructed a Banach space X with the BS
property such that L2(X) does not have the BS property (see also [39]). Bourgain proved also that Lp(X)with 1 < p < ∞ has
the BS property if and only if X has the Komlós property. If E is a reflexive Köthe function space with the subsequence
splitting property and X has the Komlós property, then the Köthe–Bochner function space E(X) has the BS property
[28, Theorem 5.6.7].

In this paper,wedefine themean separations for bounded sequences in Banach spaces. The notionwe introduce is flexible
and canbeused as a separation of amean fromzero or between successivemeans. In particular, themean separations applied
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to operators give quantities which include the measures of deviation from the ABS and BS properties considered in [24,25].
We investigate the behavior of these quantities for a special class of operators between E(Xν) sequence spaces over a Banach
sequence lattice E with the BS property, where (Xν) is a sequence of Banach spaces indexed by integers. Other properties of
this type of spaces, namely, of the Köthe–Bochner sequence spaces E(X), were investigated in [19,22]. The class of operators
we consider is characteristic for interpolation and extrapolation methods. Our main result states that the means in E(Xν)
cannot be separated by an operatormore than in any spaceXν . This fact is decisive for the heredity of the propertieswe study.

The result obtained for operators between E(Xν) sequence spaces is applied to the abstract interpolation method of Nils-
son [36]. Recall that the basic facts on the behavior of the ABS and BS properties under the real interpolation method of
Lions and Peetre [29], together with factorization theorems for these properties, were established by Beauzamy [3,4]. Hein-
rich [18] proved that the BS property of the embedding I: A0∩A1 → A0+A1 implies the BS property of the real interpolation
space (A0, A1)θ,p for all 0 < θ < 1 and 1 < p < ∞. The interpolation J- and K -methods presented in [36] and developed
also in [5] are generalizations of the classical methods of Lions and Peetre [29]. The norm of a weighted space Lp, used in the
real interpolation spaces (A0, A1)θ,p, is replaced here by amore general lattice norm. In this way, the abstract J- and K -spaces
cover also another extension of (A0, A1)θ,p in which tθ is replaced by a certain function parameter. Another application of
the result for E(Xν) sequence spaces concerns extrapolation of spaces and operators. The extrapolation methods, which
are strongly connected with interpolation, were investigated by Jawerth and Milman [21]. The extrapolation spaces were
also studied as the logarithmic spaces by Edmunds and Triebel [11]. In the case of extrapolation, we investigate whether a
property is transmitted from a family of spaces or operators to extrapolation spaces or operators between such spaces.

The approach we apply in this paper, besides quantitative and qualitative results in a general setting, provides a uniform
view on the heredity of the ABS and BS properties under interpolation and extrapolation methods.

By L(X, Y ) we will denote the space of all bounded linear operators acting between Banach spaces X and Y . The open
unit ball of X will be denoted byB(X). The number of elements of a finite subset A ⊂ N = {1, 2, 3, . . .}will be denoted by |A|.

2. Mean separations for sequences in Banach spaces

The mean separations we are going to introduce in this section are motivated by the following result of Beauzamy [3]:
a Banach space X does not have the ABS property if and only if there exist δ > 0 and a bounded sequence (xn) in X such
that


n∈A ϵnxn

 ≥ δ |A| for all finite subsets A ⊂ N and all sequences of signs (ϵn), ϵn = ±1. The result was applied in
a quantitative approach to the real interpolation of the ABS and BS properties in [24,25]. A key fact for the interpolation
estimates is that the quantity


n∈A ϵnxn/ |A|

 can be stabilized by passing from (xn) to a certain sequence of means built
on successive equipollent blocks of (xn) (see Proposition 2.3 of [24]). This can be done with the use of the spreading models
of Brunel and Sucheston [6]. Beauzamy’s results and the techniques worked out in [24,25] will be the framework for a more
general approach presented in this paper.

Let X and Y be Banach spaces. By G0 we denote the set of all sequences (ϵn)n∈G of signs ϵn = ±1 over all finite subsets
G ⊂ N. Assume that G ⊂ G0 and fix δ equal to 1 or 2.

Definition 1. Let (xn) be a bounded sequence in a Banach space. Themean separation of (xn) over G is defined by

φ(xn) = inf

δ |G|
−1

n∈G

ϵnxn

 : (ϵn)n∈G ∈ G


and the related quantity for an operator T ∈ L(X, Y ) by

Φ(T ) = sup {φ(Txn): (xn) ⊂ B(X)} .

Let H0 denote the set of all sequences (ζi)i∈


Hn of signs ζi = ±1 over all subsets


n>1 Hn ⊂ N such that (Hn) is a
sequence of equipollent sets Hn ⊂ N with maxHn < minHn+1. Let H ⊂ H0. For sequences (xn) and (yn) in a Banach space,
we write (yn) ≻H (xn), if there exists (ζi)i∈


Hn ∈ H such that yn = m−1

i∈Hn
ζixi with m = |Hn| for all n.

We will deal only with those subsets G ⊂ G0, for which there exists H ⊂ H0 such that φ over G satisfies a stability
condition with respect to the relation ≻H . A pair (G, H) will be called stable for φ in a Banach space X , if the following
conditions hold:

(s1) H contains all (ζi)i∈Hn ∈ H0 such that ζi = 1 for all i ∈


n>1 Hn.
(s2) If (ϵn)n∈G ∈ G, (ζi)i∈Hn ∈ H , G′

=


n∈G Hn and ζ ′

i = ϵnζi for n ∈ G and i ∈ Hn, then (ζ ′

i )i∈G′ ∈ G.
(s3) For every bounded sequence (xn) in X , there is (yn) ≻H (xn) such that for all (ϵn)n∈G ∈ G,δ |G|

−1

n∈G

ϵnyn

 6 φ(yn) + ε.

The above conditions imply several properties whichwill be frequently used in the proofs. In particular, by (s1), if (x′
n) is a

subsequence of (xn), then (x′
n) ≻H (xn). By (s2), if (yn) ≻H (xn), thenφ(yn) > φ(xn). Combining (s2) and (s3), we conclude that

multiple averaging with the use of the relation ≻H keeps the stability of φ (note that the transitivity of ≻H is not assumed).
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Corollary 2. Let (G, H) be a stable pair for φ in X. If (yn) ≻H (xn) satisfies condition (s3) and (yin) ≻H (yi−1
n ) for i = 1, 2, . . . , k,

where k ∈ N and (y0n) = (yn), then for all (ϵn)n∈G ∈ G,δ |G|
−1

n∈G

ϵnyin

 6 φ(yn) + ε, i = 1, 2, . . . , k.

If (G, H) is stable for φ in Y , applying Corollary 2 we can prove that Φ(S + T ) 6 Φ(S) + Φ(T ) for all S, T ∈ L(X, Y ) (see
the proof of Proposition 2.5 in [24]). Clearly, Φ(λT ) = |λ| Φ(T ) for every scalar λ. Thus Φ is a seminorm in L(X, Y ).

From now on, we consider only those pairs (G, H), which are stable for φ in every Banach space. The examples of such
pairs are the following:

1. (G0, H0).
2. (G1, H1), where G1 and H1 consist of all respectively (ϵn)n∈G ∈ G0 and (ζi)i∈


Hn ∈ H0 with ϵn = 1 for all n ∈ G and

ζi = 1 for all i ∈


n>1 Hn.
3. (G2, H2), where H2 = H1 and G2 consists of all (ϵn)n∈G ∈ G0 such that G = E ∪ F with |E| = |F | and max E < min F ,

ϵn = 1 for n ∈ E, ϵn = −1 for n ∈ F .

Indeed, (s1) and (s2) are obviously satisfied. The proofs of (s3) for (Gi, Hi), i = 0, 1, 2, are not trivial and depend on the
Ramsey theorem (see Proposition 2.3 of [24] for i = 0, 1 and Proposition 3.1 of [25] for i = 2).

The pair (G0, H0) corresponds to the ABS property. By the aforesaid Beauzamy’s result of [3], considering φ over G0 with
δ = 1, we obtain that a Banach space X has the ABS property if and only if φ(xn) = 0 for every bounded sequence (xn) in X .
By Proposition 2.5 of [24], Φ is a seminorm in L(X, Y ) such that T ∈ L(X, Y ) has the ABS property if and only if Φ(T ) = 0.

The BS property is related to (G2, H2). The mean separation φ(xn) over G2 with δ = 2 coincides with the arithmetic
separation asep(xn) introduced in [25], which is a counterpart for the BS property of James’ characterization of weak
noncompactness based on the separated convex hulls of sequence elements. By Theorem 2.3 of [25], a Banach space X has
the BS property if and only if φ(xn) = 0 for every bounded sequence (xn) in X . An operator T ∈ L(X, Y ) has the BS property
if and only if Φ(T ) = 0. If φ is taken over G2 with δ = 1, we obtain the index h(X, (BSα)) of a Banach space X introduced by
Ostrovskii [37].

3. Mean separations in E(Xν) sequence spaces

In this paper, by a Banach sequence latticewemean a Banach space E of real-valued functions onZwith the natural partial
order such that all functions on Z with finite support belong to E and if x = (x(ν)) ∈ E and |y(ν)| 6 |x(ν)| for every ν ∈ Z,
then y = (y(ν)) ∈ E and ∥y∥E 6 ∥x∥E .

Let (Xν)ν∈Z be a sequence of Banach spaces. By E(Xν) wemean the Banach space of all x = (x(ν))ν∈Z such that x(ν) ∈ Xν

for every ν ∈ Z and

∥x∥E(Xν ) =
(∥x(ν)∥Xν

)

E < ∞.

A Banach space X renormed by t∥·∥ with t > 0 will be denoted by tX . A scalar-valued lp space with weight (tν) will be
denoted by lp(tν). Given x = (x(ν)) ∈ E(Xν) and r ∈ N let

Prx = (· · · 0, 0, x(−r), . . . , x(r), 0, 0, . . .), Qrx = x − Prx.

The interpolation and extrapolation results presented in this paper rely on the behavior ofΦ on a special class of operators
acting between E(Xν) spaces. The next theorem is a far generalization of Partington’s [38] result concerning the heredity of
the BS property for direct sums of Banach spaces. Our result includes also simultaneously Theorems 3.2 of [24] and 4.4 of [25]
proved for operators between lp(X) spaces and the seminorms related respectively to the ABS and BS properties.

The next lemma allows us to reduce considerations to finitely many coordinates of E(Xν). This argument was used also
in the proof of Theorem 3 of [38] for direct sums of Banach spaces.

Lemma 3. Let (xn) be a bounded sequence in E(Xν), where E is a Banach sequence lattice with the BS property. Then for every
ε > 0 there exist r ∈ N and a sequence (yn) ≻H1(xn) such that for all (ϵn)n∈G ∈ G0,|G|

−1

n∈G

ϵnQryn


E(Xν )

< ε.

Proof. Let xn = (xn(ν)) ∈ E(Xν) and tn = (∥xn(ν)∥Xν
) ∈ E. Since E has the BS property, by Erdös–Magidor’s theorem [13],

there exists a subsequence (t ′n) of (tn) such that the Cesàro means of all subsequences of (t ′n) converge to the same limit t in
E. Clearly, for every sequence (sn) ≻H1(t

′
n),

inf

|G|
−1

n∈G

sn − t


E

: |G| < ∞


= 0.
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By Proposition 2.3 of [24], a sequence (sn) ≻H1(t
′
n) can be taken so that for every finite G ⊂ N,|G|

−1

n∈G

sn − t


E

<
ε

2
.

Consequently, for every r ∈ N,Qr


|G|

−1

n∈G

sn


E

<
ε

2
+ ∥Qr t∥E .

Let (Hn) be a sequence of finite subsets of N with |Hn| = m andmaxHn < minHn+1 for all n such that sn = m−1
i∈Hn

t ′i .

We extract the subsequence (x′
n) of (xn) so that t ′n =

x′
n(ν)


Xν


and we put yn = m−1

i∈Hn
x′

i . Since E is reflexive,
the norm of E is order continuous (see [40]). Hence there is r ∈ N such that ∥Qr t∥E < ε/2. Since E is a lattice, for every
(ϵn)n∈G ∈ G0 we get

ε >

Qr


|G|

−1

n∈G

sn


E

=

Qr


|G|

−1

n∈G

1
m


i∈Hn

x′

i(ν)

Xν


E

>

Qr


|G|

−1

n∈G

∥yn(ν)∥Xν


E

>

Qr

|G|
−1

n∈G

ϵnyn(ν)


Xν


E

=

|G|
−1

n∈G

ϵnQryn


E(Xν )

. �

Theorem 4. Let (Xν)ν∈Z and (Yν)ν∈Z be sequences of Banach spaces and let (Tν)ν∈Z be a sequence of operators such that Tν ∈

L(Xν, Yν) for every ν ∈ Z and supν∈Z ∥Tν∥ < ∞. If a Banach sequence lattice E has the BS property and T ∈ L(E(Xν), E(Yν))

is given by Tx = (Tνx(ν))ν∈Z for every x = (x(ν))ν∈Z ∈ E(Xν), then Φ(T ) = supν∈Z Φ(Tν).

Proof. Since E(Xν) and E(Yν) contain isometric copies respectively of Xν and Yν , it is enough to prove that Φ(T ) 6
supν∈Z Φ(Tν).

Fix ε > 0. We choose (xn) ⊂ B(E(Xν)) so that Φ(T ) − ε 6 φ(Txn). By Lemma 3, there exist r ∈ N and a sequence
(x′

n) ≻H1(xn) such that for all (ϵn)n∈G ∈ G0,|G|
−1

n∈G

ϵnQrTx′

n


E(Yν )

< ε. (1)

Passing to a subsequence of (x′
n), we may assume that for each coordinate |ν| 6 r the limit λν = limn

x′
n(ν)


Xν

exists andx′
n(ν)


Xν

< λν + ε/ ∥Pre∥E for every n, where e = (· · · 1, 1, 1, . . .). Put

βν =


λν +

ε

∥Pre∥E

−1

.

Now we stabilize φ consecutively on coordinates k = −r, −r + 1, . . . , r . Write x−r−1
n = x′

n and w−r−1
n (ν) =

βνTνx−r−1
n (ν). By condition (s3) for (wk−1

n (k)), we obtain a sequence (xkn) ≻H (xk−1
n ) such that for the sequence (wk

n(k)) ≻H

(wk−1
n (k)), where wk

n(k) = βkTkxkn(k), we haveδ |G|
−1

n∈G

ϵnw
k
n(k)


Yk

6 φ

wk

n(k)

+ ε

for all (ϵn)n∈G ∈ G. Then we put wk
n(ν) = βνTνxkn(ν) for ν ≠ k.

After 2r+1 steps, all sequences (wr
n(ν)), |ν| 6 r , are built on the common sequence (xrn) in such away that (xkn) ≻H (xk−1

n )
for k = −r, −r + 1, . . . , r . By Corollary 2,δ |G|

−1

n∈G

ϵnw
r
n(ν)


Yν

6 φ

wν

n(ν)

+ ε 6 φ


wr

n(ν)

+ ε

for all (ϵn)n∈G ∈ G and every |ν| 6 r . Clearly,

wr

n(ν)


⊂ Tν(B(Xν)).
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In combination with the lattice properties of E, it follows thatδ |G|
−1

n∈G

ϵnPrTxrn


E(Yν )

=

Pr


β−1
ν

δ |G|
−1

n∈G

ϵnw
r
n(ν)


Yν


E

6

Pr λν +
ε

∥Pre∥E


E
max
|ν|6r

δ |G|
−1

n∈G

ϵnw
r
n(ν)


Yν

6 (1 + ε)


max
|ν|6r

φ

wr

n(ν)

+ ε


.

Assume thatmax|ν|6r φ

wr

n(ν)

is attained for j, |j| 6 r . Since (Tx′

n) ≻H (Txn) and (Txkn) ≻H (Txk−1
n ) for k = −r, −r+1, . . . , r ,

by (s2) and (1), we have

Φ(T ) − ε 6 φ(Txn) 6 φ(Txrn) 6

δ |G|
−1

n∈G

ϵnTxrn


E(Yν )

6

δ |G|
−1

n∈G

ϵnPrTxrn


E(Yν )

+

δ |G|
−1

n∈G

ϵnQrTxrn


E(Yν )

6 (1 + ε)

φ

wr

n(j)

+ ε


+ δε 6 (1 + ε)


Φ(Tj) + ε


+ 2ε.

Since ε > 0 was chosen arbitrary, Φ(T ) 6 supν∈Z Φ(Tν). �

Considering φ over G0 and G2, we obtain results respectively for the ABS and BS properties. The following corollary
includes Corollary 3.3 of [24] for theABSproperty of lp(X) andTheorem3of Partington [38] for the BSproperty of direct sums.

Corollary 5. The space E(Xν) has the ABS property if and only if all Xν have the ABS property. The same holds for the BS property.

4. Interpolation results

Interpolation of operator properties by the general real methods was studied both from qualitative and quantitative
viewpoints. Weak compactness of operators for the abstract K -method was investigated by Aizenstein and Brudnyi
[5, Theorem4.6.8] andMastyło [31],who also examined in [32] the Rosenthal property for interpolation spaces. The behavior
of compactness under the abstract J- and K -methods of Nilsson [36] was investigated by Cobos, Fernández-Cabrera and
Martínez [8]. Other operators which form closed ideals, such as Banach–Saks operators, Asplund operators and Rosenthal
operators, were studied in [7,30].

Quantitative studies were undertaken for a measure of noncompactness [9] and for the measures related to closed
operator ideals [14]. The aim of a quantitative treatment is to obtain estimates for certainmeasures of deviation from a given
property, whichmay provide also qualitative results. Themeasures used in such situations may be designed individually for
each property or, as in the case of the ideal measures, several properties are covered by one formula based on some common
properties, as surjectivity or injectivity of an operator ideal. In our paper, we examine the behavior of the mean separations
for the abstract J- and K -spaces considered by Nilsson [36].

Let A⃗ = (A0, A1) be a Banach couple. Then ∆(A⃗) = A0 ∩ A1 and Σ(A⃗) = A0 + A1 with norms

∥a∥∆(A⃗) = max

∥a∥A0 , ∥a∥A1


, ∥a∥Σ(A⃗) = inf


∥a0∥A0 + ∥a1∥A1 : a = a0 + a1


are Banach spaces. The functionals

J(t, a) = max

∥a∥A0 , t ∥a∥A1


, K(t, a) = inf


∥a0∥A0 + t ∥a1∥A1 : a = a0 + a1


with t > 0 form the families of equivalent norms respectively in ∆(A⃗) and Σ(A⃗).

A Banach sequence lattice E is called J-nontrivial, if

sup


ν∈Z

min{1, 2−ν
} |ξ(ν)| : ξ = (ξ(ν)), ∥ξ∥E 6 1


< ∞,

and K -nontrivial, if

(min{1, 2ν
}) ∈ E.

If E is J-nontrivial, the abstract J-space AE;J consists of all sums


ν∈Z a(ν) convergent in Σ(A⃗) such that (a(ν)) ⊂ ∆(A⃗) and
(J(2ν, a(ν))) ∈ E. If E is K -nontrivial, then the abstract K -space AE;K consists of all a ∈ Σ(A⃗) such that (K(2ν, a)) ∈ E. The
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norms in AE;J and AE;K are given respectively by

∥a∥AE;J
= inf


∥(J(2ν, a(ν)))∥E : a =


ν∈Z

a(ν)


, ∥a∥AE;K

= ∥(K(2ν, a))∥E .

The space AE;J is continuously embedded in AE;K but need not coincide with it. If E = lp(2−νθ ) with 1 6 p 6 ∞ and
0 < θ < 1, then AE;J and AE;K agree and they are equal to the real interpolation space (A0, A1)θ,p of Lions and Peetre [29].
They also coincide, if E = lp(1/f (2ν)), 1 6 p 6 ∞ and f is a function parameter defined in [17]. Then each of AE;J and
AE;K gives the real interpolation space (A0, A1)f ,p with a function parameter, in particular, (A0, A1)θ,p if f (t) = tθ . For more
examples we refer the reader to [8].

In this paper, we deal with the following equivalent norms in AE;J and AE;K :

|||a|||AE;J = infmax
(∥a(ν)∥A0)


E ,
(2ν

∥a(ν)∥A1)

E


,

the infimum being taken over all representations (a(ν)) ⊂ ∆(A⃗) of a with


ν∈Z a(ν) convergent to a in Σ(A⃗) and
(a(ν)) ∈ E(A0) ∩ E(2νA1);

|||a|||AE;K = infmax
(∥a0(ν)∥A0)


E ,
(2ν

∥a1(ν)∥A1)

E


,

the infimumbeing taken over all decompositions a = a0(ν)+a1(ν) for all ν ∈ Zwith (a0(ν)) ∈ E(A0) and (a1(ν)) ∈ E(2νA1).
Let A⃗ = (A0, A1) and B⃗ = (B0, B1) be Banach couples and T :Σ(A⃗) → Σ(B⃗) a linear operator. We write T : A⃗ → B⃗, if the

restriction T |Aj is a bounded operator into Bj for j = 0, 1.

Theorem 6. Let E be a Banach sequence lattice with the BS property. Let A⃗ = (A0, A1) and B⃗ = (B0, B1) be Banach couples and
T : A⃗ → B⃗.

1. If E is J-nontrivial and AE;J , BE;J are abstract J-spaces respectively for A⃗, B⃗, then

Φ(T : AE;J → BE;J) 6 max{Φ(T : A0 → B0), Φ(T : A1 → B1)}.

2. If E is K-nontrivial and AE;K , BE;K are abstract K-spaces respectively for A⃗, B⃗, then

Φ(T : AE;K → BE;K ) 6 max{Φ(T : A0 → B0), Φ(T : A1 → B1)}.

Proof. Let Xj = E(2jνAj) and Yj = E(2jνBj) for j = 0, 1. To avoid ambiguity in some cases, we will write φ(xn)X to denote
φ (xn) in the norm of X . Fix ε > 0.

Let (an) ⊂ B(AE;J) and bn = Tan. For each n there exists a representation un = (un(ν)) of an such that un ∈ B(Xj) for
j = 0, 1. Write wn = (Tun(ν)). Then wn is a representation of bn. By condition (s3), there exists a sequence (w′

n) ≻H (wn)
such thatδ |G|

−1

n∈G

ϵnw
′

n


Y0

6 φ(w′

n)Y0 + ε,

for all (ϵn)n∈G ∈ G. Then w′
n = m−1

i∈Hn
ζiwi for some (ζi)i∈


Hn ∈ H , where m = |Hn| for all n. Put b′

n = m−1
i∈Hn

ζibi.
Repeating the above procedure for (w′

n) and (b′
n), we obtain the sequences (w′′

n) ≻H (w′
n) and (b′′

n) ≻H (b′
n) such that w′′

n is a
representation of b′′

n and, by Corollary 2,δ |G|
−1

n∈G

ϵnw
′′

n


Yj

6 φ(w′′

n)Yj + ε,

for j = 0, 1 and all (ϵn)n∈G ∈ G. Take now any (ϵn)n∈G ∈ G. Then

φ(bn) 6 φ(b′

n) 6 φ(b′′

n) 6



δ |G|

−1

n∈G

ϵnb′′

n




BE;J

6 max
j=0,1

δ |G|
−1

n∈G

ϵnw
′′

n


Yj

6 max
j=0,1

φ(w′′

n)Yj + ε.

Let T j: Xj → Yj be given by T jx = (Tjx(ν)) for every x = (x(ν)) ∈ Xj, where Tj = T |Aj and j = 0, 1. By Theorem 4,
Φ(T j) = Φ(Tj). Since (w′′

n) ∈ T j(B(Xj)) for j = 0, 1, it follows that

φ(bn) 6 max
j=0,1

Φ(T j) + ε = max
j=0,1

Φ(Tj) + ε.

The proof of the first inequality is complete.



A. Kryczka / J. Math. Anal. Appl. 407 (2013) 281–289 287

We show the second inequality. Let (an) ⊂ B(AE;K ) and bn = Tan. For each n there exists a decomposition aj,n =

(aj,n(ν)) ∈ B(Xj), j = 0, 1 of an. Then bj,n = (Taj,n(ν)), j = 0, 1 is a decomposition of bn. We stabilize φ similarly as in the
proof of Theorem 4. By condition (s3), we can find (b′

0,n) ≻H (b0,n), where b′

0,n = m−1
i∈Hn

ζib0,i for some (ζi)i∈


Hn ∈ H
with |Hn| = m for all n, such thatδ |G|

−1

n∈G

ϵnb′

0,n


Y0

6 φ(b′

0,n)Y0 + ε

for all (ϵn)n∈G ∈ G. We put b′

1,n = m−1
i∈Hn

ζib1,i and b′
n = m−1

i∈Hn
ζibi. Applying again (s3), we choose (b′′

1,n) ≻H (b′

1,n)
so that for all (ϵn)n∈G ∈ G,δ |G|

−1

n∈G

ϵnb′′

1,n


Y1

6 φ(b′′

1,n)Y1 + ε.

Thenwe construct (b′′

0,n) ≻H (b′

0,n) and (b′′
n) ≻H (b′

n) in thewaywedid it for (b′

1,n) and (b′
n), respectively. Take any (ϵn)n∈G ∈ G.

By Corollary 2,

φ(bn) 6 φ(b′

n) 6 φ(b′′

n) 6



δ |G|

−1

n∈G

ϵnb′′

n




BE;K

6 max
j=0,1

δ |G|
−1

n∈G

ϵnb′′

j,n


Yj

6 max
j=0,1

φ(b′′

j,n)Yj + ε.

Applying Theorem 4 as for the operators between abstract J-spaces, we obtain the desired inequality. �

Corollary 7. If T : A0 → B0 and T : A1 → B1 have the ABS property, then T : AE;J → BE;J and T : AE;K → BE;K have the ABS
property. In particular, if A0 and A1 have the ABS property, then so have AE;J and AE;K . The same holds for the BS property.

In particular cases, a property may be inherited by an interpolated operator from only one restriction T : A0 → B0 or
T : A1 → B1. It holds, for instance, for operators between the real interpolation spaces of Lions and Peetre [29], since in
this case the norms of the interpolation spaces are logarithmically convex up to a constant. In [8,7], by putting additional
assumptions on the shift operators in E, the authors show how to obtain results of this type in a more general setting. In the
next corollary, if φ is taken over G0 and G2, we obtain respectively Theorem 4.1 of [24] for the ABS property and Theorem
5.1 of [25] for the BS property.

Corollary 8. If E = lp(2−νθ ) with 1 < p < ∞ and 0 < θ < 1, then

Φ(T : AE;K → BE;K ) 6 2θ(1−θ) (Φ(T : A0 → B0))
1−θ (Φ(T : A1 → B1))

θ .

5. Extrapolation results

Let I ⊂ [0, 1] be an interval. An ordered family (Aθ )θ∈I of Banach spaceswill be called compatible if there exist two Banach
spaces A0 and A1 such that A0 ↩→ Aθ ↩→ Aη ↩→ A1 for all θ < η and all the embeddings ↩→ are continuous and uniformly
bounded. The abstract extrapolation methods were developed, among others, by Jawerth and Milman in [21] and Edmunds
and Triebel in [11]. We follow the approach from a recent paper of Cobos and Kühn [10]. Let (Aθ )θ∈I be a compatible family
of Banach spaces, b > 0 and 1 < p < ∞ (the construction of extrapolation spaces is valid also for p = 1 and p = ∞,
but our results do not apply for these values). Fix θ ∈ I so that (θ, θ + ε) ⊂ I for some ε > 0. The extrapolation space
Aθ (log A)+b,p = A+

θ,b,p consists of all a ∈


θ<η6θ+ε Aη with finite norm given by

∥a∥Aθ (log A)+b,p
=

 ε

0


tb ∥a∥Aθ+t

p dt
t

1/p

.

Now fix θ ∈ I so that (θ − ε, θ) ⊂ I for some ε > 0. The extrapolation space Aθ (log A)−b,p = A−

θ,b,p consists of all a ∈ A1

which can be represented by an integral a =
 ε

0 υ(t) dt
t convergent in A1 with υ(t) ∈ Aθ−t and finite norm given by

∥a∥Aθ (log A)−b,p
= inf

 ε

0


t−b

∥υ(t)∥Aθ−t

p dt
t

1/p

,

the infimum being taken over all representations of a as above. The spaces A+

θ,b,p and A−

θ,b,p do not depend on the choice of
ε > 0.
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The extrapolation spaces A+

θ,b,p and A−

θ,b,p can be equivalently renormed by the following discrete norms. For J ∈ N such
that 2−J < ε and for all ν > J , we put σν = θ + 2−ν and λν = θ − 2−ν . Let

∥a∥A+

θ,b,p
=


∞
ν=J


2−νb

∥a∥Aσν

p1/p

and

∥a∥A−

θ,b,p
= inf


∞
ν=J


2νb

∥a(ν)∥Aλν

p1/p

,

the infimum being taken over all representations a =


∞

ν=J a(ν), a(ν) ∈ Aλν , convergent in A1. Replacing J by J ′ ∈ N such
that 2−J ′ < ε, we generate equivalent norms both in A+

θ,b,p and A−

θ,b,p.
In particular, if Aθ = [A0, A1]θ with 0 < θ < 1 are complex interpolation spaces with respect to complex Banach

spaces A0 and A1 such that A0 is densely and continuously embedded in A1, then A+

θ,b,p and A−

θ,b,p correspond to the abstract
logarithmic spaces Aθ (log A)b,p of Edmunds and Triebel [11] with b ∈ R \ {0}. In turn, if A0 = L∞(Ω) and A1 = L1(Ω) for a
bounded open subset Ω ⊂ Rn, then Aθ (log A)b,p coincides with the Zygmund space L1/θ (log L)b(Ω).

The question of the heredity of properties by extrapolation spaces and operators can be posed analogously as for
interpolation. We recall some results based on quantitative tools. In [41], Triebel estimated the entropy numbers for the
embeddings of the fractional Besov–Sobolev spaces into Orlicz spaces L∞(log L)b(Ω). A similar problem for embeddings
into Lp(log L)b(Ω) spaces with 1 < p < ∞ was investigated by Edmunds and Triebel in [12]. Estimating the modulus of
uniform convexity, Nikolova and Zachariades [34] proved that uniform convexity is preserved by the abstract logarithmic
spaces. Using Clarkson’s inequality, they also examined with Persson [33] the type and cotype of such spaces. A measure of
weak noncompactness for operators extrapolated by ∆p- and Σp-methods of Jawerth and Milman [21] with 1 < p < ∞

was estimated in [26] (see also [35]). A general qualitative approach to extrapolation properties of closed operator ideals
was recently presented by Fernández-Cabrera and Martínez in [15].

Let (Aθ )θ∈I and (Bθ )θ∈I be compatible families of Banach spaces such that A0 ↩→ Aθ ↩→ A1 and B0 ↩→ Bθ ↩→ B1 for
every θ ∈ I . For a linear operator T : A1 → B1, we will write T : (Aθ )θ∈I → (Bθ )θ∈I , if for every θ ∈ I the restriction T |Aθ is a
bounded operator into Bθ and the norms of T |Aθ are uniformly bounded on I .

Theorem 9. Let (Aθ )θ∈I and (Bθ )θ∈I be compatible families of Banach spaces and 1 < p < ∞. If T : (Aθ )θ∈I → (Bθ )θ∈I , then

Φ(T : A+

θ,b,p → B+

θ,b,p) 6 sup
θ∈I

Φ(T : Aθ → Bθ )

and

Φ(T : A−

θ,b,p → B−

θ,b,p) 6 sup
θ∈I

Φ(T : Aθ → Bθ ).

Proof. We prove only the second inequality. The proof of the first one runs similarly. Let (an) be a sequence in B(A−

θ,b,p).
Then for each n there exists a representation of an such that

an =

∞
ν=J

an(ν), (an(ν))ν>J ∈ B(lp(2νbAλν )).

Put Tν = T |Aλν , bn = Tan and yn = (Tνan(ν))ν>J . Then yn ∈ lp(2νbBλν ) and yn is a representation of bn. Define the operator

T ∈ L(lp(2νbAλν ), lp(2
νbBλν )), Ta = (Tνa(ν))ν>J

for every a = (a(ν))ν>J ∈ lp(2νbAλν ). Thus yn ∈ T (B(lp(2νbAλν ))). Fix ε > 0. By condition (s3), there exists a sequence
(y′

n) ≻H (yn) such thatδ |G|
−1

n∈G

ϵny′

n


lp(2νbBλν )

6 φ(y′

n) + ε

for all (ϵn)n∈G ∈ G.
Then y′

n = m−1
i∈Hn

ζiyi for some (ζi)i∈


Hn ∈ H , where |Hn| = m for all n. Put b′
n = m−1

i∈Hn
ζibi. Then (b′

n) ≻H (bn)
and for any (ϵn)n∈G ∈ G we have

φ(bn) 6 φ(b′

n) 6

δ |G|
−1

n∈G

ϵnb′

n


B−

θ,b,p

6

δ |G|
−1

n∈G

ϵny′

n


lp(2νbBλν )

6 φ(y′

n) + ε.
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Since (y′
n) is also a sequence in T (B(lp(2νbAλν ))), we have

φ(y′

n) 6 Φ(T : lp(2νbAλν ) → lp(2νbBλν )).

Substituting Xν = Aλν and Yν = Bλν for ν > J , Xν = Yν = {0} for ν < J and E = lp(2νb) in Theorem 4, we obtain

Φ(T : lp(2νbAλν ) → lp(2νbBλν )) 6 sup
ν>J

Φ

T : Aλν → Bλν


6 sup

θ∈I
Φ (T : Aθ → Bθ ) .

An arbitrary choice of (an) and ε > 0 gives the assertion. �

Corollary 10. If T : Aθ → Bθ has the ABS property for all θ ∈ I , then T : A+

θ,b,p → B+

θ,b,p and T : A−

θ,b,p → B−

θ,b,p have the ABS
property. In particular, if Aθ has the ABS property for all θ ∈ I , then so have A+

θ,b,p and A−

θ,b,p. The same holds for the BS property.
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