期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:373
Multiplication operators in Kothe-Bochner spaces
Article
Calabuig, J. M.2  Rodriguez, J.1  Sanchez-Perez, E. A.2 
[1] Univ Murcia, Fac Informat, Dept Matemat Aplicada, E-30100 Murcia, Spain
[2] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, Valencia 46022, Spain
关键词: Multiplication operator;    Kothe-Bochner space;    Lebesgue-Bochner space;    Pettis integrable function;    Pettis norm;   
DOI  :  10.1016/j.jmaa.2010.07.038
来源: Elsevier
PDF
【 摘 要 】

Let X be a Banach space and E an order continuous Banach function space over a finite measure mu. We prove that an operator T in the Kothe-Bochner space E(X) is a multiplication operator (by a function in L(infinity)(mu)) if and only if the equality T(g < f, x*> x) = g < T(f), x*> x holds for every g is an element of L(infinity)(mu), f is an element of E(X), x is an element of X and x* is an element of X*. (C) 2010 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2010_07_038.pdf 139KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次