期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:373 |
Multiplication operators in Kothe-Bochner spaces | |
Article | |
Calabuig, J. M.2  Rodriguez, J.1  Sanchez-Perez, E. A.2  | |
[1] Univ Murcia, Fac Informat, Dept Matemat Aplicada, E-30100 Murcia, Spain | |
[2] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, Valencia 46022, Spain | |
关键词: Multiplication operator; Kothe-Bochner space; Lebesgue-Bochner space; Pettis integrable function; Pettis norm; | |
DOI : 10.1016/j.jmaa.2010.07.038 | |
来源: Elsevier | |
【 摘 要 】
Let X be a Banach space and E an order continuous Banach function space over a finite measure mu. We prove that an operator T in the Kothe-Bochner space E(X) is a multiplication operator (by a function in L(infinity)(mu)) if and only if the equality T(g < f, x*> x) = g < T(f), x*> x holds for every g is an element of L(infinity)(mu), f is an element of E(X), x is an element of X and x* is an element of X*. (C) 2010 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jmaa_2010_07_038.pdf | 139KB | download |