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Let X be a Banach space and E an order continuous Banach function space over
a finite measure μ. We prove that an operator T in the Köthe–Bochner space E(X) is
a multiplication operator (by a function in L∞(μ)) if and only if the equality T (g〈 f , x∗〉x) =
g〈T ( f ), x∗〉x holds for every g ∈ L∞(μ), f ∈ E(X), x ∈ X and x∗ ∈ X∗.
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1. Introduction

Throughout the paper E is a Banach function space over a finite measure space (Ω,Σ,μ). It is well known that the
functions that define multiplication operators in E are exactly those of L∞(μ) (cf. [12, Theorem 1]). Recall that an ortho-
morphism in a Banach lattice F is a regular operator π : F → F such that π( f ) ⊥ g = 0 whenever f ⊥ g = 0, f , g ∈ F .
The following characterization of orthomorphisms in Banach function spaces goes back to Zaanen [16, Theorem 8] (cf. [1,
Example 2.67]).

Theorem 1.1. A mapping T : E → E is an orthomorphism if and only if it is a multiplication operator, that is, there is g0 ∈ L∞(μ) such
that

T ( f ) = g0 f for all f ∈ E.

On the other hand, it is known that an operator in E is a multiplication operator if and only if it commutes with all
multiplication operators in E , cf. [5, Proposition 2.2]. More precisely:

Theorem 1.2. An operator T : E → E is a multiplication operator if and only if

T (g f ) = gT ( f ) for all g ∈ L∞(μ) and f ∈ E.
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In this paper we are interested in multiplication operators in Köthe–Bochner spaces E(X), where X is a Banach space. It
is easy to see that the characterization given in Theorem 1.2 does not work in the vector-valued case, even for X = R

2. Let
us show this with the following example.

Example 1.3. Let {e1, e2} be the canonical basis of R
2. Each f ∈ E(R2) can be written as f = f1e1 + f2e2, where f1(ω) :=

〈 f (ω), e1〉 and f2(ω) := 〈 f (ω), e2〉. Consider the operator T : E(R2) → E(R2) given by T ( f ) := f2e1 + f1e2. Notice that for
each g ∈ L∞(μ) and f ∈ E(R2) we have

T (g f ) = (g f )2e1 + (g f )1e2 = g f2e1 + g f1e2 = gT ( f ).

However, for the constant function f := e1 ∈ E(R2), we have T ( f ) = e2 	= g f for every g ∈ L∞(μ). So T cannot be a
multiplication operator.

Our main goal is to prove the following characterization of multiplication operators in E(X). Here S(X) stands for the
subspace of E(X) made up of all simple functions.

Theorem 1.4. Suppose S(Y ) is dense in E(Y ) whenever Y is a separable closed subspace of X . Let T : E(X) → E(X) be an operator.
The following statements are equivalent:

(i) T is a multiplication operator, that is, there is g0 ∈ L∞(μ) such that

T ( f ) = g0 f for all f ∈ E(X).

(ii) The equality

T
(

g
〈
f , x∗〉x) = g

〈
T ( f ), x∗〉x

holds for every g ∈ L∞(μ), f ∈ E(X), x ∈ X and x∗ ∈ X∗ .

The assumption on density of simple functions is guaranteed whenever E is order continuous. Thus, our Theorem 1.4
can be applied to the Lebesgue–Bochner spaces L p(μ, X) for 1 � p < ∞. From the technical point of view, the proof of
Theorem 1.4 makes use of Markushevich bases. Some related results can be found in [2,13].

At the end of the paper, a similar result for spaces of Pettis integrable functions is also given (Theorem 2.4).

1.1. Terminology

All unexplained terminology can be found in our standard references [7] and [11]. All our linear spaces are real. Given
a Banach space Z , the symbol Z∗ stands for the topological dual of Z and the duality is denoted by 〈·,·〉. We write B Z

to denote the closed unit ball of Z . The norm of Z is denoted by ‖ · ‖Z if needed explicitly. An ‘operator’ is a linear
continuous mapping between Banach spaces. Recall that a Banach space E is called Banach function space over a finite
measure space (Ω,Σ,μ) if E is a linear subspace of L0(μ) such that: (i) if f ∈ L0(μ) and | f | � |g| μ-a.e. for some g ∈ E ,
then f ∈ E and ‖ f ‖E � ‖g‖E ; (ii) the characteristic function χA of each A ∈ Σ belongs to E; (iii) the ‘identity’ defines an
operator from E to L1(μ). Throughout the paper X is a Banach space. We denote by E(X) the Köthe–Bochner space made up
of all (equivalence classes of) strongly measurable functions f : Ω → X for which the real-valued function ω �→ ‖ f (ω)‖X

belongs to E , equipped with the norm

‖ f ‖E(X) := ∥∥∥∥ f (·)∥∥X

∥∥
E .

E(X) is a Banach space which coincides with the usual Lebesgue–Bochner space L p(μ, X) when E = L p(μ), 1 � p � ∞.
Given f ∈ E(X) and x∗ ∈ X∗ , we write 〈 f , x∗〉 to denote the (equivalence class of the) composition x∗ ◦ f , which belongs
to E and satisfies

∥∥〈
f , x∗〉∥∥

E �
∥∥x∗∥∥

X∗‖ f ‖E(X).

Given h ∈ E and x ∈ X , we write hx to denote the function of E(X) given by ω �→ h(ω)x. Recall that every g ∈ L∞(μ)

induces a multiplication operator Mg : E(X) → E(X) by Mg( f ) := g f . For more information on Köthe–Bochner spaces, we
refer the reader to [10].

2. Results

The following lemma is the key to prove Theorem 1.4. Recall first that a Markushevich basis (shortly M-basis) of X is a
family (xi, x∗

i )i∈I , where xi ∈ X and x∗
i ∈ X∗ , such that: (i) x∗

i (x j) = δi, j (the Kronecker symbol) for every i, j ∈ I , (ii) X =
span{xi: i ∈ I} and (iii) {x∗: i ∈ I} separates the points of X (i.e. for each x ∈ X \ {0} there is i ∈ I such that x∗(x) 	= 0). It is
i i
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well known that every separable Banach space has an M-basis, cf. [9, Theorem 1.22]. More generally, every weakly compactly
generated Banach space has an M-basis, cf. [9, Corollary 5.2]. For complete information on this topic, we refer the reader
to [9].

Lemma 2.1. Suppose X has an M-basis (xi, x∗
i )i∈I . Let T : E(X) → E(X) be an operator satisfying

T
(

g
〈
f , x∗

j

〉
xi

) = g
〈
T ( f ), x∗

j

〉
xi (2.1)

for every g ∈ L∞(μ), f ∈ E(X) and i, j ∈ I . Then there is g0 ∈ L∞(μ) such that T ( f ) = g0 f for every f ∈ S(X). Moreover, if S(X) is
dense in E(X), then T ( f ) = g0 f for every f ∈ E(X).

Proof. We first notice that
〈
T (hxi), x∗

j

〉 = 0, i 	= j, h ∈ E. (2.2)

Indeed, (2.1) applied to f := hxi ∈ E(X) and g := 1 ∈ L∞(μ) yields
〈
T (hxi), x∗

j

〉
xi = T

(〈
hxi, x∗

j

〉
xi

) = T (0) = 0,

and so 〈T (hxi), x∗
j 〉 = 0 (bear in mind that xi 	= 0).

For each i ∈ I we define Ti : E → E by

Ti(h) := 〈
T (hxi), x∗

i

〉
.

Observe that Ti is an operator, because
∥∥Ti(h)

∥∥
E = ∥∥〈

T (hxi), x∗
i

〉∥∥
E

�
∥∥x∗

i

∥∥
X∗

∥∥T (hxi)
∥∥

E(X)
�

∥∥x∗
i

∥∥
X∗‖T ‖‖hxi‖E(X) � Ci‖h‖E

for all h ∈ E , where Ci := ‖x∗
i ‖X∗‖T ‖‖xi‖X .

We claim that each Ti satisfies

Ti(gh) = gTi(h), g ∈ L∞(μ), h ∈ E. (2.3)

Indeed, (2.1) with i = j applied to f := hxi ∈ E(X) yields

T (ghxi) = T
(

g
〈
hxi, x∗

i

〉
xi

) = g
〈
T (hxi), x∗

i

〉
xi,

hence Ti(gh) = 〈T (ghxi), x∗
i 〉 = g〈T (hxi), x∗

i 〉 = gTi(h).
For each i ∈ I equality (2.3) allows us to apply Theorem 1.2 to find gi ∈ L∞(μ) such that

〈
T (hxi), x∗

i

〉 = Ti(h) = gih, h ∈ E. (2.4)

We claim that gi = g j for every i, j ∈ I . Indeed, fix i 	= j and consider the function f := xi + x j ∈ E(X). By (2.4), (2.2)
and (2.1) (with g := 1 ∈ L∞(μ) and h := 1 ∈ E) we have

gix j = 〈
T (xi), x∗

i

〉
x j

= 〈
T (xi), x∗

i

〉
x j + 〈

T (x j), x∗
i

〉
x j = 〈

T ( f ), x∗
i

〉
x j = T

(〈
f , x∗

i

〉
x j

) = T (x j)

and, similarly, we also have

g jx j = 〈
T (x j), x∗

j

〉
x j

= 〈
T (xi), x∗

j

〉
x j + 〈

T (x j), x∗
j

〉
x j = 〈

T ( f ), x∗
j

〉
x j = T

(〈
f , x∗

j

〉
x j

) = T (x j).

Hence gi x j = g j x j and so gi = g j (bear in mind that x j 	= 0).
Therefore, there is g0 ∈ L∞(μ) such that

〈
T (hxi), x∗

i

〉 = g0h, h ∈ E, i ∈ I. (2.5)

Fix A ∈ Σ and x ∈ X . Set h := χA ∈ E and f := hx ∈ E(X). We will prove that T ( f ) = g0 f . To this end, fix ε > 0. Since
X = span{xi: i ∈ I}, we can find {i1, . . . , iN } ⊂ I and real numbers ai1 , . . . ,aiN such that

∥∥∥∥∥x −
N∑

ain xin

∥∥∥∥∥ � ε. (2.6)

n=1 X
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Set y := ∑N
n=1 ain xin ∈ X and

f0 := hy =
N∑

n=1

ain hxin ∈ E(X), f1 := g0 f0 =
N∑

n=1

ain g0hxin ∈ E(X).

For each i ∈ I equalities (2.2) and (2.5) yield

〈
T ( f0), x∗

i

〉 =
N∑

n=1

ain

〈
T (hxin), x∗

i

〉 =
N∑

n=1

ainδin,i g0h = 〈
f1, x∗

i

〉
,

and so T ( f0) = f1 (because {x∗
i : i ∈ I} separates the points of X and both T ( f0) and f1 are strongly measurable), that is,

T (hy) = g0hy. Therefore
∥∥T ( f ) − g0 f

∥∥
E(X)

�
∥∥T

(
h(x − y)

)∥∥
E(X)

+ ∥∥g0h(x − y)
∥∥

E(X)
.

By (2.6) we have
∥∥h(x − y)

∥∥
E(X)

� ‖h‖E‖x − y‖X � ‖h‖Eε

and so
∥∥T ( f ) − g0 f

∥∥
E(X)

� Cε,

where C := (‖T ‖ + ‖g0‖L∞(μ))‖h‖E . As ε > 0 is arbitrary, T ( f ) = g0 f .
It follows at once that T ( f ) = g0 f for every f ∈ S(X). If in addition S(X) is dense in E(X), the equality T ( f ) = g0 f

holds for every f ∈ E(X), because both T and Mg0 : E(X) → E(X), Mg0 ( f ) := g0 f , are continuous. The proof is over. �
We will also need the following lemma.

Lemma 2.2. Let T : E(X) → E(X) be an operator satisfying

T
(

g
〈
f , x∗〉x) = g

〈
T ( f ), x∗〉x (2.7)

for every g ∈ L∞(μ), f ∈ E(X), x ∈ X and x∗ ∈ X∗ . Let Y ⊂ X be a closed subspace such that S(Y ) is dense in E(Y ). Then T maps
E(Y ) into itself.

Proof. Fix f ∈ E(Y ) of the form f = hy for some y ∈ Y \ {0} and h ∈ E . By the Hahn–Banach theorem there exist y∗ ∈ Y ∗
with 〈y, y∗〉 = 1 and x∗ ∈ X∗ such that x∗|Y = y∗ . By applying (2.7) with g := 1 ∈ L∞(μ) and x := y we get

T ( f ) = T
(〈

f , x∗〉y) = 〈
T ( f ), x∗〉y ∈ E(Y ).

The linearity of T implies that T (S(Y )) ⊂ E(Y ). Since S(Y ) is dense in E(Y ), T is continuous and E(Y ) is closed in E(X), it
follows that T (E(Y )) ⊂ E(Y ). �

We can now prove our main result:

Proof of Theorem 1.4. (i) ⇒ (ii) is straightforward.
(ii) ⇒ (i). Fix x0 ∈ X \ {0} and x∗

0 ∈ X∗ with 〈x0, x∗
0〉 = 1. As in the proof of Lemma 2.1, we can define an operator

T0 : E → E, T0(h) := 〈
T (hx0), x∗

0

〉
,

which satisfies

T0(gh) = gT0(h), g ∈ L∞(μ), h ∈ E.

Thus Theorem 1.2 ensures the existence of g0 ∈ L∞(μ) such that
〈
T (hx0), x∗

0

〉 = T0(h) = g0h, h ∈ E. (2.8)

We claim that T ( f ) = g0 f for all f ∈ E(X). Indeed, take any f ∈ E(X). Since f is strongly measurable, there is A ∈ Σ

with μ(Ω \ A) = 0 such that f (A) is separable, cf. [7, Theorem 2, p. 42]. Thus Y := span( f (A) ∪ {x0}) is a separable closed
subspace of X such that f ∈ E(Y ) and x0 ∈ Y . By Lemma 2.2, we have T (E(Y )) ⊂ E(Y ). Clearly, the restriction T |E(Y ) satisfies

T |E(Y )

(
g
〈
f1, y∗〉y) = g

〈
T |E(Y )( f1), y∗〉y
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for every g ∈ L∞(μ), f1 ∈ E(Y ), y ∈ Y and y∗ ∈ Y ∗ . Lemma 2.1 applied to T |E(Y ) (recall that every separable Banach space
has an M-basis) ensures the existence of g ∈ L∞(μ) such that

T ( f1) = g f1, f1 ∈ E(Y ).

Since both f0 := x0 and f belong to E(Y ), we have T ( f0) = g f0 = gx0 and T ( f ) = g f . On the other hand, (2.8) applied to
h := 1 ∈ E yields

g0 = 〈
T ( f0), x∗

0

〉 = 〈
gx0, x∗

0

〉 = g

and so T ( f ) = g0 f , as claimed. The proof is over. �
It is well known that if E is order continuous then S(X) is dense in E(X), cf. [10, Chapter 3]. Thus, we get the following

result which can be applied to the Lebesgue–Bochner spaces L p(μ, X) for 1 � p < ∞. Notice that, in general, S(X) is not
dense in L∞(μ, X), cf. [10, Chapter 3].

Corollary 2.3. Suppose E is order continuous. Let T : E(X) → E(X) be an operator. The following statements are equivalent:

(i) T is a multiplication operator, that is, there is g0 ∈ L∞(μ) such that

T ( f ) = g0 f for all f ∈ E(X).

(ii) The equality

T
(

g
〈
f , x∗〉x) = g

〈
T ( f ), x∗〉x

holds for every g ∈ L∞(μ), f ∈ E(X), x ∈ X and x∗ ∈ X∗ .

We finish the paper by pointing out that some of the previous ideas can also be used when dealing with spaces of Pettis
integrable functions. Standard references on this topic are [14] and [15]. We write P (μ, X) to denote the normed space of
(equivalence classes of) Pettis integrable functions f : Ω → X , equipped with the so-called Pettis norm

‖ f ‖Pe := sup
x∗∈B X∗

∫

Ω

∣∣〈 f , x∗〉∣∣dμ.

In this space, two functions f , g : Ω → X are identified if and only if, for each x∗ ∈ X∗ , we have 〈 f , x∗〉 = 〈g, x∗〉. The
subspace of P (μ, X) made up of all strongly measurable Pettis integrable functions is denoted by P s(μ, X). Clearly S(X) ⊂
P s(μ, X). Given h ∈ L1(μ) and x ∈ X , we write hx to denote the function of P s(μ, X) given by ω �→ h(ω)x.

Theorem 2.4. Suppose X has an M-basis (xi, x∗
i )i∈I . Let Z ⊂ P (μ, X) be a subspace such that:

(a) P s(μ, X) ⊂ Z ,
(b) g f ∈ Z whenever g ∈ L∞(μ) and f ∈ Z .

Let T : Z → Z be an operator satisfying:

T
(

g
〈
f , x∗

j

〉
xi

) = g
〈
T ( f ), x∗

j

〉
xi

for every g ∈ L∞(μ), f ∈ Z and i, j ∈ I . Then there is g0 ∈ L∞(μ) such that T ( f ) = g0 f for every f ∈ S(X). Moreover, if S(X) is
dense in Z , then T ( f ) = g0 f for every f ∈ Z .

Sketch of proof. Just mimic the proof of Lemma 2.1 replacing E by L1(μ). Bear in mind that two Pettis integrable functions
f , g : Ω → X have the same equivalence class in P (μ, X) if and only if, for each i ∈ I , we have 〈 f , x∗

i 〉 = 〈g, x∗
i 〉. Indeed, ob-

serve that, given any A ∈ Σ , the latter implies that 〈∫A f dμ, x∗
i 〉 = 〈∫A g dμ, x∗

i 〉 for every i ∈ I , hence
∫

A f dμ = ∫
A g dμ. �

Several subspaces Z of P (μ, X) satisfy conditions (a) and (b) of Theorem 2.4, namely: both P s(μ, X) and P (μ, X) (cf. [14,
Theorem 4.3]), the subspace of all Birkhoff integrable functions [3,4] and the subspace of all McShane integrable functions
[6,8] (when μ is quasi-Radon).

In general, S(X) is not dense in P (μ, X). Such density condition is guaranteed whenever μ is Radon or X is weakly
compactly generated, cf. [14, Section 9] and [15, Chapter 4]. Without additional assumptions, S(X) is always dense in
P s(μ, X) as well as in the spaces of Birkhoff and McShane integrable functions.
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