期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:324
Asymptotic behaviour of Verblunsky coefficients
Article
Alfaro, Maria Pilar ; Hernandez, Manuel Bello ; Montaner, Jesus Maria
关键词: orthogonal polynomials;    Verblunsky coefficients;   
DOI  :  10.1016/j.jmaa.2006.01.015
来源: Elsevier
PDF
【 摘 要 】

Let V(z) = Pi(m)(j=1)(z - xi(j)), xi(h) not equal xi(k), h not equal k and vertical bar xi(j)vertical bar = m, and consider the polynomials orthogonal with respect to vertical bar V vertical bar(2) d mu, psi(n)(vertical bar V vertical bar(2) d mu; z), where mu is a finite positive Borel measure on the unit circle with infinite points in its support, such that the reciprocal of its Szego function has an analytic extension beyond vertical bar z vertical bar < 1. In this paper we deduce the asymptotic behaviour of their Verblunsky coefficients. By means of this result, an asymptotic representation for these polynomials inside the unit circle is also obtained. (c) 2006 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2006_01_015.pdf 152KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次