学位论文详细信息
Lax Pairs for the Ablowitz-Ladik System Via Orthogonal Polynomials on the Unit Circle
integrable systems;orthogonal polynomials
Nenciu, Irina ; Simon, Barry M.
University:California Institute of Technology
Department:Physics, Mathematics and Astronomy
关键词: integrable systems;    orthogonal polynomials;   
Others  :  https://thesis.library.caltech.edu/1750/2/Thesis.pdf
美国|英语
来源: Caltech THESIS
PDF
【 摘 要 】

We investigate the existence and properties of an integrable system related to orthogonal polynomials on the unit circle. We prove that the main evolution of the system is defocusing Ablowitz-Ladik (also known as the integrable discrete nonlinear Schroedinger equation). In particular, we give a new proof of complete integrability for this system.

Furthermore, we use the CMV and extended CMV matrices defined in the context of orthogonal polynomials on the unit circle by Cantero, Moral, and Velazquez, and Simon, respectively, to construct Lax pair representations for the Ablowitz-Ladik hierarchy in the periodic, finite, and infinite settings.

【 预 览 】
附件列表
Files Size Format View
Lax Pairs for the Ablowitz-Ladik System Via Orthogonal Polynomials on the Unit Circle 407KB PDF download
  文献评价指标  
  下载次数:34次 浏览次数:16次