JOURNAL OF APPROXIMATION THEORY | 卷:139 |
Asymptotics of the orthogonal polynomials for the Szego class with a polynomial weight | |
Article | |
Denisov, S ; Kupin, S | |
关键词: orthogonal polynomials; asymptotics; Verblunsky coefficients; Szego condition; polynomial Szego condition; modified wave operators; Hardy and Nevanlinna classes; | |
DOI : 10.1016/j.jat.2005.02.002 | |
来源: Elsevier | |
【 摘 要 】
Let P be a trigonometric polynomial, non-negative on the unit circle T. We say that a measure sigma on T belongs to the polynomial Szego class, if d sigma(e(io)) = sigma'(ac) (e(io)) d theta + d sigma(s)(e(io)), sigma(s) is singular, and integral(2 pi)(o) p(e(io)) log sigma'(ac)(e(io)) d theta > -infinity. For the associated orthogonal polynomials {phi(n)}, we obtain pointwise asymptotics inside the unit disc D. Then we show that these asymptotics hold in L-2-sense on the unit circle. As a corollary, we get an existence of certain modified wave operators. (C) 2005 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jat_2005_02_002.pdf | 244KB | download |