期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:96
Lebesgue Sobolev orthogonality on the unit circle
Article
Berriochoa, E ; Cachafeiro, A
关键词: orthogonal polynomials;    Sobolev inner products;    measures on the unit circle;    Szego condition;   
DOI  :  10.1016/S0377-0427(98)00089-2
来源: Elsevier
PDF
【 摘 要 】

This paper is devoted to the study of asymptotic properties of the orthogonal polynomials with respect to a Sobolev inner product [GRAPHICS] with d mu(theta) a finite positive Borel measure on [0,2 pi] with an infinite set as support verifying the Szego condition, lambda(1) > 0, lambda(k) greater than or equal to 0 (k = 2,..., p) and d theta/2 pi the normalized Lebesgue measure on [0, 2 pi]. Our aim is to extend some previous results that we have obtained in [2, 3] when the measure mu belongs to the Bernstein-Szego class and p = 1. (C) 1998 Elsevier Science B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_S0377-0427(98)00089-2.pdf 294KB PDF download
  文献评价指标  
  下载次数:10次 浏览次数:1次