期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:393 |
Space-time fractional diffusion on bounded domains | |
Article | |
Chen, Zhen-Qing2  Meerschaert, Mark M.1  Nane, Erkan3  | |
[1] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48823 USA | |
[2] Univ Washington, Dept Math, Seattle, WA 98195 USA | |
[3] Auburn Univ, Dept Math & Stat, Auburn, AL 36849 USA | |
关键词: Fractional derivative; Anomalous diffusion; Probabilistic representation; Strong solution; Cauchy problem; Bounded domain; | |
DOI : 10.1016/j.jmaa.2012.04.032 | |
来源: Elsevier | |
【 摘 要 】
Fractional diffusion equations replace the integer-order derivatives in space and time by their fractional-order analogues. They are used in physics to model anomalous diffusion. This paper develops strong solutions of space-time fractional diffusion equations on bounded domains, as well as probabilistic representations of these solutions, which are useful for particle tracking codes. (C) 2012 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jmaa_2012_04_032.pdf | 251KB | download |