期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:260
Probabilistic representations of solutions of elliptic boundary value problem and non-symmetric semigroups
Article
Chen, Chuan-Zhong1  Sun, Wei2  Zhang, Jing2 
[1] Hainan Normal Univ, Sch Math & Stat, Haikou 571158, Peoples R China
[2] Concordia Univ, Dept Math & Stat, Montreal, PQ H3G 1M8, Canada
关键词: Dirichlet boundary value problem;    Singular coefficient;    Non-symmetric semigroup;    Probabilistic representation;    Dirichlet form;    Heat kernel estimate;   
DOI  :  10.1016/j.jde.2015.08.034
来源: Elsevier
PDF
【 摘 要 】

In this paper, we use a probabilistic approach to show that there exists a unique, bounded continuous solution to the Dirichlet boundary value problem for a general class of second order non-symmetric elliptic operators L with singular coefficients, which does not necessarily have the maximum principle. The theory of Dirichlet forms and heat kernel estimates play a crucial role in our approach. A probabilistic representation of the non-symmetric semigroup {T-t}(t >= 0) generated by L is also given. (C) 2015 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2015_08_034.pdf 388KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次