期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:463
Blow-up profiles and refined extensibility criteria in quasilinear Keller-Segel systems
Article
Freitag, Marcel1 
[1] Univ Paderborn, Inst Math, D-33098 Paderborn, Germany
关键词: Classical solutions;    Blow-up;    Nonlinear parabolic equations;    Critical exponents;    Cell movement (chemotaxis etc.);   
DOI  :  10.1016/j.jmaa.2018.03.052
来源: Elsevier
PDF
【 摘 要 】

In this work we consider the system {u(t) = del center dot(D(u)del u) - del center dot(S(u)del v) in Omega x (0, infinity) v(t) = Delta v-v+u in Omega x (0, infinity), for a bounded domain Omega subset of R-n, n >= 2, where the functions D and S behave similarly to power functions. We prove the existence of classical solutions under Neumann boundary conditions and for smooth initial data. Moreover, we characterise the maximum existence time T-max of such a solution depending chiefly on the relation between the functions D and 5: We show that a finite maximum existence time also results in unboundedness in L-P-spaces for smaller p is an element of [1, infinity). (C) 2018 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2018_03_052.pdf 457KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:1次