
J. Math. Anal. Appl. 463 (2018) 964–988
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Blow-up profiles and refined extensibility criteria in quasilinear 

Keller–Segel systems

Marcel Freitag
Institut für Mathematik, Universität Paderborn, 33098 Paderborn, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 September 2017
Available online 28 March 2018
Submitted by Yoshio Yamada

Keywords:
Classical solutions
Blow-up
Nonlinear parabolic equations
Critical exponents
Cell movement (chemotaxis etc.)

In this work we consider the system{
ut = ∇ · (D(u)∇u) −∇ · (S(u)∇v) in Ω × (0,∞)
vt = Δv − v + u in Ω × (0,∞) ,

for a bounded domain Ω ⊂ R
n, n ≥ 2, where the functions D and S behave similarly 

to power functions. We prove the existence of classical solutions under Neumann 
boundary conditions and for smooth initial data. Moreover, we characterise the 
maximum existence time Tmax of such a solution depending chiefly on the relation 
between the functions D and S: We show that a finite maximum existence time also 
results in unboundedness in Lp-spaces for smaller p ∈ [1, ∞).

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The Keller–Segel systems considered in this work attempt to describe the behaviour of certain slime 
molds. In particular, given a position x and a time t, by u(x, t) we denote the density of a cell population 
whose movement is motivated by the concentration v(x, t) of a signal substance.

In these systems, which were proposed by Keller and Segel [17] in 1970 and of which there are several 
modifications (cf. e.g. Hillen and Painter [14]), the cross-diffusion makes solutions prone to blow-up and 
indeed blow-up detection is one of the most challenging tasks; to this day results remain fragmented. Even 
with the original system {

ut = Δu−∇ · (u∇v) in Ω × (0,∞)
vt = Δv − v + u in Ω × (0,∞)

there is no trivial answer on occurrences of blow-up, and if there is one, one often likes to know whether 
it arises in finite or infinite time. Beginning with a bounded domain Ω ⊂ R

n with a smooth boundary 
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(and sufficiently regular initial data) we can state the following results: The case n = 1 has been studied 
(see [23]) with the result that there is no blow-up at all. For the two-dimensional setting we know that if 
the initial mass 

∫
Ωu0 is smaller than 4π, then solutions are bounded, for this we refer to [11] and [22], while 

for n ≥ 3 a smallness condition on ‖u0‖Ln
2 (Ω) + ‖v0‖W 1,n(Ω) can be used to infer the existence of such a 

solution (see [4]). For larger initial data on the other hand we generally only know that there are blow-up 
solutions for which unboundedness can happen either in finite or infinite time [15].

In some cases the statements can be refined if we restrict ourselves to radially symmetric settings. For 
Ω = BR(0) ⊂ R

2 and 
∫
Ωu0 > 8π radially symmetric solutions that blow up in finite time have been found 

by [13] and [21] while in the case Ω = BR(0) ⊂ R
n and n ≥ 3 even for small initial masses some solutions 

blow up in finite time (see [31]).
In this work we modify the first equation and for some bounded domain Ω ⊂ R

n, n ≥ 2, we consider the 
system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut = ∇ · (D(u)∇u) −∇ · (S(u)∇v) in Ω × (0,∞)
vt = Δv − v + u in Ω × (0,∞)
∂u
∂ν = ∂v

∂ν = 0 on ∂Ω × (0,∞)
u(·, 0) = u0, v(·, 0) = v0 in Ω

(KS)

with nonnegative functions D and S. For a helpful overview of many models arising out of this fundamental 
description we also refer to the survey [1].

Several choices for these functions have been proposed and studied in recent years. One suggestion is 
to couple them via some function Q and the relations D(u) = Q(u) − uQ′(u) and S(u) = uQ′(u) for all 
u ≥ 0. Here, Q is intended to describe the probability of a cell at (x, t) to find space nearby, [3] considers 
a decreasing function with decay at large densities as the best fit. In [32] an overview of hydrodynamic 
approaches or those involving cellular Potts models is given.

There are also authors who propose a signal dependence in D or S, that is to write e.g. S(u, v) as done 
in [29], [14] and [25] to incorporate saturation effects or a threshold for the activation of cross-diffusion. For 
similar changes to D we refer to the works [9], [19], [27] and [26].

One set of choices has been of particular interest, namely where D and S behave like powers of u, and 
the result heavily depends on the relation of these two quantities. Setting

D(s) = (s + 1)m−1 for all s ∈ [0,∞)

and

S(s) = s(s + 1)κ−1 for all s ∈ [0,∞)

for some m ∈ R and κ ∈ R we find the following for n ≥ 2: If 1 + κ − m < 2
n and if the initial data are 

reasonably smooth, then we can find global classical solutions that are bounded [28] and this even remains 
true for general nonnegative functions D and S with

S(s)
D(s) ≤ Csα for all s ≥ 1

for some C > 0 and α < 2
n . On the other hand, if 1 + κ −m > 2

n and if Ω is a ball, then for any M > 0
there are some T ∈ (0, ∞] and a radially symmetric solution (u, v) in Ω × (0, T ) with 

∫
Ωu(·, t) = M for all 

t ∈ (0, T ) such that u is not bounded in Ω × (0, T ) [30]. Once more there are also studies on more general 
choices of D and S (see [28], [30] as well as [18], [5], [24] and [16]) that find
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S(s)
D(s)

≥ Csα for all s ≥ 1

for some C > 0 and α > 2
n to be enough to obtain the same result. In [6] and [7] the specific choice of D and 

S as powers of u + 1 has been examined in greater detail with respect to this blow-up phenomenon and the 
authors were able to prove that for κ ≥ 1 or m ≥ 1 a finite value of T is obtainable and that for m < n−2

n

and κ < m
2 − n−2

2n we have T = ∞; i.e. that the solution exists globally with lim supt→∞ ‖u(·, t)‖L∞(Ω) = ∞.
Here we want to refine the blow-up results in the case where 1 + κ −m < 2

n does not necessarily hold. 
We consider twice differentiable D and S allowing for the inequalities

CD(s + 1)m−1 ≤ D(s) ≤ ĈD (s + 1)m̂−1 (D)

with some m, m̂ ∈ R and CD, ĈD > 0 for any s ∈ [0, ∞) and

|S(s)| ≤ CS(s + 1)κ (S)

with κ ∈ R and some CS > 0, again for all s ∈ [0, ∞).
We remark that the functions may even depend on the variables (x, t) ∈ Ω × [0, ∞) and on the solution 

to the second equation in (KS), σ ∈ [0, ∞), as long as the overall boundedness remains unaltered, e.g.

|S(x, t, s, σ)| ≤ CS(s + 1)κ ∀ (x, t, s, σ) ∈ Ω × [0,∞)3

is actually good enough, but we omit the dependance on the other three quantities for the sake of clarity.
Furthermore, we even observe the following

Remark. From ‖u‖L1(Ω) ≡ ‖u0‖L1(Ω), lemma 2.6 in [10] deduces a uniform and global-in-time lower bound 
for v and therefore admissible choices of (S) include functions of the structure

S(u, v) = S̃(u)
vα

where S̃ has the properties of our previous S and where α can be any nonnegative constant.

We have already seen that the trivial observation of the boundedness of

t �→
∫
Ω

u(·, t) ≡
∫
Ω

u0

is certainly enough to prove a classical solution to be bounded and thereby global at least for m > κ + n−2
n

(see [28]). It is our endeavour to extend this result by considering any relation between κ and m and finding 
a p0 ≥ 1 such that boundedness of

t �→
∫
Ω

u(·, t)p0

is sufficient for a solution to (KS) to be global and bounded.
In [12] the authors (in the case κ > 1 and (n − 2)κ < n + 2) have examined the semilinear heat equation

ut = Δu + uκ
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in a convex domain Ω and concluded that a positive blow-up solution u with maximum existence time 
T ∈ (0, ∞) for some C > 0 satisfies

u(·, t) ≤ C(T − t)
1

1−κ for all t ∈ (0, T ),

giving us a more precise idea on the manner in which u blows up. We will attempt to achieve similar 
knowledge for our problem (KS).

2. The main results

The centre of our computations and estimates is a threshold p given by

p :=
{

n
2 (1 + κ−m) if κ < m + 1
n(κ−m) if κ ≥ m + 1,

(p)

which gives us refined knowledge on the behaviour of blow-up solutions to (KS). Note that this is the same 
as setting p := max

{
n
2 (1 + κ−m), n(κ−m)

}
. Locally, [28] gives us classical solutions to (KS):

Lemma 2.1. Let D ∈ C2 ([0,∞)) with (D) for some m, m̂ ∈ R and CD, ĈD > 0 as well as S ∈ C2 ([0,∞))
with S(0) = 0 and nonnegative initial data u0 ∈ C0 (Ω) and v0 ∈ C1 (Ω). Then there are Tmax ∈ (0, ∞] and 
a pair (u, v) of nonnegative functions in C0 (Ω × [0, Tmax)

)
∩C2,1 (Ω × (0, Tmax)

)
solving (KS) classically in 

Ω × (0, Tmax). Additionally we either have

Tmax = ∞ or lim sup
t↗Tmax

(
‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖L∞(Ω)

)
= ∞.

Our main result asserts that such a solution can be extended to a solution in Ω × (0, ∞) if we have more 
information on the Lp0(Ω)-norm of u for some p0 ≥ 1:

Theorem 2.2. Let D ∈ C2 ([0,∞)) with (D) for some m, m̂ ∈ R and CD, ĈD > 0 as well as S ∈ C2 ([0,∞))
with S(0) = 0 and (S) for some κ ∈ R and CS > 0. Additionally, let nonnegative initial data u0 ∈ C0 (Ω)
and v0 ∈ C1 (Ω) be given. If for a solution (u, v) to (KS) in Ω × (0, Tmax) found in lemma 2.1 we then have 
Tmax < ∞, we automatically know

lim sup
t↗Tmax

‖u(·, t)‖Lp0 (Ω) = ∞

for any p0 > p with p as in (p) such that p0 ≥ 1.

This indeed gives us an interpretation for the behaviour of u in comparison to some negative powers of 
the space variable x:

Corollary 2.3. Let D ∈ C2 ([0,∞)) with (D) for some m, m̂ ∈ R and CD, ĈD > 0 as well as S ∈ C2 ([0,∞))
with S(0) = 0 and (S) for some κ ∈ R and CS > 0. Additionally, let nonnegative initial data u0 ∈ C0 (Ω)
and v0 ∈ C1 (Ω) be given. Taking a solution (u, v) to (KS) in Ω × (0, Tmax) found in lemma 2.1, we 
assume Tmax < ∞ and pick a blow-up point x0 ∈ Ω, meaning there are sequences (xk)k∈N

⊂ Ω and 
(tk)k∈N

⊂ (0, Tmax) with

xk → x0 as k → ∞,

tk → Tmax as k → ∞



968 M. Freitag / J. Math. Anal. Appl. 463 (2018) 964–988
and

u(xk, tk) → ∞ as k → ∞.

Then for any α < n
p

with p as in (p) we cannot find a C > 0 such that

u(x, t) ≤ C |x− x0|−α

holds for all (x, t) ∈ Ω × (0, Tmax).

Proof. Assuming this to be wrong, for any p0 ∈ (p, nα ) and for some positive constants r, C1 and C2 we 
have

1
Cp0

1

∫
Ω

u(·, t)p0 ≤
∫
Ω

|x− x0|−αp0 dx = C2 +
∫

Br(0)

|x|−αp0 dx

and the right-hand side is bounded because of αp0 < n, leading to a contradiction in view of theorem 2.2. �
We close this section with two remarks concerning the compatibility of this result with previous works. 

Firstly, if m ≥ κ + n−2
n , we can pick any p0 > 1 and [28] shows that even p0 = 1 is enough for 

‖u‖L∞((0,Tmax)));Lp0 (Ω) < ∞ to guarantee that u is global and bounded. On the other hand we do not require 
too much of p0 comparing our result to one in [1]: lemma 3.2 in that work demands p = max

{
nκ
2 , n(κ− 1)

}
, 

which is exactly the same as our result for m = 1.

3. Extending the maximal existence time

As seen in condition (p), there are differences when tackling the problem depending on the relation 
between κ and m + 1. We will discuss in detail how one can proceed in the case κ < m + 1 and a second 
chapter will deal with the differences that arise when considering the inverse case.

3.1. Part I: κ < m + 1

In this first part we demand 1 ≤ p0 ∈ (n2 (1 + κ−m) , n) �= ∅ without loss of generality. This in the case 
m > κ + n−2

n admits the choice p0 = 1 + η for arbitrarily small η > 0 which can even be relaxed to p0 = 1, 
thereby using nothing more than a property inherent to the first equation. For this we refer to [28].

3.1.1. Choosing parameters
For the sake of clarity in later parts of this work we will now determine as many of the subsequently arising 

parameters as precisely as possible. Our main goal is to allow for arbitrarily large p in ‖u‖L∞((0,T );Lp(Ω))
and having fixed such a p we need to ensure the existence of every other quantity needed to achieve this.

Lemma 3.1. Let m ∈ R and κ ∈ R with κ < m + 1 as well as some p0 ∈
(
n
2 (1 + κ−m), n

)
with p0 ≥ 1. 

There are positive numbers p > n + 2, θ > 1 and μ > 1, their conjugate exponents θ′ > 1 and μ′ > 1, as 
well as a nonempty interval (q_, q+) ⊂ (1, ∞) with q− := max

{
n, np0

n−p0
, 1

2
np0
n−p0

+ 1
}

and q+ := n
2
m+p−1
n−p0

such that together with s+ := np0
n−p0

> 1 the following requirements are met: For p we have

p > p0 + m + 1 − 2κ > m + 1 − 2κ, (p1)

p > 2n− p0 + p0 + 1 −m ≥ 3 −m > 1 −m, (p2)

n
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p > 1 −m + 2(n− p0), (p3)

p > 2p0 + 1 −m > p0
n− 2
n

+ 1 −m, (p4)

p > 2n− 2
n

+ 1 −m, (p5)

p > 3m + 1 − 4κ (p6)

and

p > 2 − κ. (p7)

With respect to q+ we have

q+ > n, (q1)

q+ >
np0

n− p0
>

p0(n− 2)
2(n− p0)

(q2)

and

q+ >
1
2

np0

n− p0
+ 1. (q3)

Additionally, we can achieve

θ >
m + p− 1

2(−m + p− 1 + 2κ) >
p0

−m + p− 1 + 2κ (θ1)

and

θ <
q

q − 2 for all q ∈ (q_, q+) (θ2)

as well as

μ >
p0

2 (μ1)

and

μ >
m + p− 1

4 . (μ2)

Lastly, the inequalities

s+ < 2θ′ (s1)

and

s+ < 2(q − 1)μ′ for all q ∈ (q_, q+) (s2)

also hold.
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Proof. Since

n < q+

is equivalent to

1 <
m + p− 1
2(n− p0)

,

we see that (p3) leads to (q1) not contradicting q_ < q+. Moreover

np0

n− p0
< q+

holds if and only if

2p0 < m + p− 1

which shows that (q2) is admissible if (p4) holds. Finally we see that we may demand (q3) since

1
2

np0

n− p0
+ 1 < q+

is guaranteed by

1 <
n

2(n− p0)
(m + p− 1 − p0)

which in turn is a consequence of (p2). Therefore our conditions for p are sufficient to guarantee the existence 
of a nonempty interval (q_, q+) with the designated borders.

Due to q
q−2 > 1 for any q > 2 and with

m + p− 1
2(−m + p− 1 + 2κ) < 1

as a consequence of (p6), the conditions (θ1) and (θ2) can easily be met. So we fix some θ ∈ (1, q_
q_−2 ) and 

an arbitrary μ > 1 satisfying (μ1) and (μ2). One swiftly sees that

s+ = np0

n− p0
≤ 2θ′

holds if and only if

θ

θ − 1 ≥ np0

2(n− p0)

is true. Therefore, the condition in question is equivalent to

1 − 1
θ
≤ 2(n− p0)

np0

and

1 ≥ 1 − 2(n− p0)
.

θ np0
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Herein either the term on the right-hand side is nonpositive or p0 > 2n
n+2 which at first seems to lead to a 

new requirement

θ ≤ 1
1 − 2(n−p0)

np0

.

However, (q2) ensures

q

(
1 − 2(n− p0)

np0

)
< q − 2 for all q ∈ (q−, q+)

which in turn proves that (θ2) is sufficient here.
Even more directly we can deal with (s2):

s+ = np0

n− p0
< 2(q − 1)μ′ for all q ∈ (q_, q+)

is true if and only if

1 − 1
μ
<

2(q − 1)(n− p0)
np0

for all q ∈ (q_, q+).

This is the same as

1
μ
> 1 − 2(q − 1)(n− p0)

np0
for all q ∈ (q_, q+)

and because of the equivalence of

q > 1 + 1
2

np0

n− p0

and

1 <
2(q − 1)(n− p0)

np0
,

here the right-hand side can never be positive. For any s ∈ [1, s+) we therefore have s < 2θ′ and s <
2(q − 1)μ′. �

We now combine these parameters with the conditions on D and S and study the consequences of our 
choices with respect to the applicability of upcoming estimates.

Lemma 3.2. Let m ∈ R and κ ∈ R with κ < m + 1 as well as some p0 ∈
(
n
2 (1 + κ−m), n

)
with p0 ≥ 1. 

With p, q_, q+, s+, θ and μ as in lemma 3.1, we can find q ∈ (q_, q+) and s ∈ [1, s+) such that

s

q
< 2

holds and such that

β1 :=
n
2

(
−m+p−1+2κ

p0
− 1

θ

)
1 − n + n(m+p−1)
2 2p0
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and

γ1 :=
n
2 (2

s − 1
θ′ )

1 − n
2 + nq

s

as well as

β2 :=
n
2

(
2
p0

− 1
μ

)
1 − n

2 + n(m+p−1)
2p0

and

γ2 :=
n
2 (2(q−1)

s − 1
μ′ )

1 − n
2 + nq

s

,

are positive and that they furthermore allow for the estimates

β1 + γ1 < 1

and

β2 + γ2 < 1.

Proof. The positivity of these parameters is a direct consequence of the ranges chosen for p, q, θ, μ and s
in lemma 3.1.

With p, θ and μ already fixed, we consider variable variants γ̃1(q, s) and γ̃2(q, s) of two of the central 
quantities of this lemma depending on still unknown q and s. We furthermore set f(q, s) := β1 + γ̃1(q, s)
and g(q, s) := β2 + γ̃2(q, s) and we seek to prove smallness of these continuous functions close to q+ and s+. 
We begin with

g(q+, s+) =
n
2

(
2
p0

− 1
μ

)
1 − n

2 + n(m+p−1)
2p0

+
n
2

(
m+p−1

p0
− 2(n−p0)

np0
− 1

μ′

)
1 − n

2 + n(m+p−1)
np0

=
n
2

1 − n
2 + n(m+p−1)

2p0

[
2n− 2(n− p0)

np0
− 1 + m + p− 1

p0

]

= 1
2
n − 1 + m+p−1

p0

[
2
n
− 1 + m + p− 1

p0

]

= 1.

Using L :=
(
1 − n

2 + q(n−p0)
p0

)2
· 2
n as an abbreviation, we obtain the following statement concerning the 

derivative of g:

L
∂g

∂q
(q, s+) = 2(n− p0)

np0

(
1 − n

2 + q(n− p0)
p0

)
−
(

2(q − 1)(n− p0)
np0

− 1
μ′

)
n− p0

p0

= n− p0

p0

[
2
n
− 1 + 2q(n− p0)

np0
− 2(q − 1)(n− p0)

np0
+ 1

μ′

]

= n− p0

p0

[
2
p0

− 1
μ

]

> 0.
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On the other hand we see that

1 > f(q+, s+) =
n
2

1 − n
2 + n(m+p−1)

2p0

[
−m + p− 1 + 2κ

p0
− 1 + 2n− p0

np0

]

is equivalent to

2
n
− 1 + m + p− 1

p0
>

−m + p− 1 + 2κ
p0

− 1 + 2n− p0

np0

which in turn is precisely our overall requirement

p0 >
n

2 (1 + κ−m) .

This leads to the following result: If q ∈ (q_, q+) and s ∈ [1, s+) are marginally smaller than their respective 
upper bounds, the requested relations hold. Since s+

q+
< 2, demanding s

q < 2 as well now is unproblem-
atic. �

We will use these parameters and their relationship to each other to prove our main result after introducing 
several helpful inequalities.

3.1.2. Some helpful lemmata
In this section we mainly state simple propositions and collect results of previous works starting with the 

elementary

Lemma 3.3. For any positive β and γ whose sum is less than 1, and for each η > 0, there is a constant 
c > 0 such that

(1 + aβ)(1 + bγ) ≤ η(a + b) + c

holds for all positive numbers a and b.

This follows directly after several consecutive employments of Young’s inequality. It has already been 
shown that regularity of v can be derived (see [16]) if u belongs to L∞ ((0, Tmax);Lp(Ω)) for some p ≥ 1; in 
this case we have

Lemma 3.4. Let (u, v) solve the second equation in (KS) in Ω × (0, T ) for some T > 0. Say for some p ≥ 1
and C > 0 one knows

‖u(·, t)‖Lp(Ω) ≤ C for all t ∈ (0, T ).

Then

‖v‖L∞((0,T );W 1,q(Ω)) < ∞

follows for any q ∈ [1, np
(n−p)+ ) and even q = ∞ if p > n.

This results in two helpful conclusions: Firstly, we may already use the finiteness of all norms with 
q < np0

(n−p0)+ , and furthermore we can concentrate our efforts on norms of u as the rest will follow suit.
In the appendix of [28] we find the means to deduce bounds on the L∞(Ω)-norm of u in the very general
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Lemma 3.5. For some T ∈ (0, ∞] and a bounded domain Ω ⊂ R
n, consider a nonegative function u ∈

C0 (Ω × [0, T )
)
∩ C2,1 (Ω × (0, T )

)
that solves

{
ut ≤ ∇ · (D(x, t, u)∇u) + ∇ · f(x, t) + g(x, t), in Ω × (0, T )
∂u
∂ν ≤ 0, on ∂Ω × (0, T )

classically for the following functions and parameters: Firstly, we assume

0 ≤ D ∈ C1 (Ω × [0, T ) × [0,∞)
)

to satisfy

D(·, ·, s) ≥ δsm−1

in Ω × (0, T ) for fixed m ∈ R, s0 ≥ 1, δ > 0 and any s ≥ s0. Furthermore, we suppose that

f ∈ C0 ((0, T ); C0(Ω) ∩ C1(Ω)
)
,

g ∈ C0 (Ω × (0, T ))

and

f · ν ≤ 0 on ∂Ω × (0, T ),

and that numbers q1 > n + 2, q2 > n+2
2 and p0 ≥ 1 fulfil

p0 > 1 −m
(n + 1)q1 − (n + 2)

q1 − (n + 2)

and

p0 > 1 − m

1 − n
n+2

q2
q2−1

as well as

p0 >
n(1 −m)

2 ,

and that ‖f‖L∞((0,T );Lq1 (Ω)), ‖g‖L∞((0,T );Lq2 (Ω)) and ‖u‖L∞((0,T );Lp0 (Ω)) are finite. Then there is a constant 
C > 0 depending on these three norms as well as ‖u(·, 0)‖L∞(Ω), Ω, δ and m such that

‖u(·, t)‖L∞(Ω) ≤ C

holds for all t ∈ (0, T ).

Since we derive bounds on ‖v(·, t)‖W 1,q(Ω) in lemma 3.4, we can rewrite our problem in a way that allows 
for the employment of this result.

We shall also use the following pointwise estimate for the normal derivative of |∇v|2:
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Lemma 3.6. For bounded domains Ω, there always exists a constant C > 0 with the property that for any 
w ∈ C2(Ω) satisfying ∂w

∂ν

∣∣
∂Ω = 0, the estimate

∂|∇w|2
∂ν

≤ C|∇w|2 on ∂Ω

holds.

This has been accomplished by authors Mizoguchi and Souplet in [20] and replaced the more coarse 

estimate ∂|∇v|2
∂ν

∣∣∣
∂Ω

≤ 0 which demanded Ω to be convex.
We near the conclusion of this section by first recalling the Gagliardo–Nirenberg interpolation inequality 

(for a reference see [8]) as well as (out of a class of generalisations) a fractional variant needed in one of our 
proofs and for which we refer to a corollary in Section III of [2].

Lemma 3.7 (Gagliardo–Nirenberg inequality). Assume p, q ∈ [1, ∞] and r ∈ (0, p) with p < ∞ for q = n and 
p ≤ nq

n−q in the case q < n. Then for a ∈ (0, 1] given by

−n

p
= (1 − n

q
)a− n

r
(1 − a).

We can find a constant C > 0 such that

‖w‖Lp(Ω) ≤ C‖∇w‖aLq(Ω)‖w‖1−a
Lr(Ω) + C‖w‖Lr(Ω)

holds for any w ∈ C1 (Ω).
Lemma 3.8 (Gagliardo–Nirenberg inequality for fractional Sobolev spaces). For fixed r ∈

(
0, 1

2
)

there are 
C > 0 and a ∈ (0, 1) such that

‖w‖
W r+1

2 ,2(Ω)
≤ C‖∇w‖aL2(Ω)‖w‖1−a

L2(Ω) + C‖w‖L2(Ω)

holds for any w ∈ C1 (Ω).
In this first instance we apply lemma 3.7 to a power of the gradient of a function:

Corollary 3.9. Given s ≥ 1 and q ≥ 1 satisfying s
q < 2, there exists C > 0 such that for a ∈ (0, 1] as in 

lemma 3.7

∫
Ω

|∇w|2q ≤ C

⎡
⎣1 +

⎛
⎝∫

Ω

|∇ |∇w|q|2
⎞
⎠

a⎤
⎦

holds for any smooth w with ‖∇w‖Ls(Ω) < ∞.

Proof. By lemma 3.7 we have a C1 > 0 and an a > 0 such that together with some additional constant 
C2 > 0, according to our assumed preliminary bound on ∇w we see that
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∫
Ω

|∇w|2q = ‖|∇w|q‖2
L2(Ω)

≤ C1 ‖∇|∇w|q‖2a
L2(Ω) ‖|∇w|q‖2(1−a)

L
s
q (Ω)

+ C1 ‖|∇w|q‖2
L

s
q (Ω)

≤ C2

⎡
⎣1 +

⎛
⎝∫

Ω

|∇ |∇w|q|2
⎞
⎠

a⎤
⎦

holds for any t ∈ (0, T ). �
Lemma 3.10. For any q ≥ 1 and η > 0 there is Cη > 0 such that

∫
∂Ω

|∇w|2q ≤ η

∫
Ω

|∇ |∇w|q|2 + Cη

∫
Ω

|∇w|2q

holds for any w ∈ C2(Ω).

Proof. We use lemma 3.8 with some r ∈
(
0, 1

2
)
, and together with the embedding W r+ 1

2 ,2(Ω) ↪→ L2 (∂Ω)
this gives us positive constants a < 1, C1 and C2 such that

∫
∂Ω

|∇w|2q = ‖|∇w|q‖2
L2(∂Ω)

≤ C1 ‖|∇w|q‖2
W r+ 1

2 ,2(Ω)

≤ C2 ‖|∇w|q‖2a
L2(Ω) ‖|∇w|q‖2(1−a)

L2(Ω) + C2 ‖|∇w|q‖2
L2(Ω)

holds. Young’s inequality then transforms this into the desired result. �
As a direct consequence of these results we find

Lemma 3.11. For w ∈ C2(Ω) with ∂w
∂ν

∣∣
∂Ω = 0 and ‖∇w‖L∞((0,T );Ls(Ω)) < ∞ for some T > 0, s ≥ 1 and 

q ≥ 1 satisfying sq < 2 we have

∫
Ω

|∇w|2q−2Δ|∇w|2 ≤ −q − 1
q2

∫
Ω

|∇|∇w|q|2 + C for all t ∈ (0, T )

for some positive C.

Proof. From lemma 3.6 we obtain∫
∂Ω

|∇w|2q−2 ∂|∇w|2
∂ν

≤ C1

∫
∂Ω

|∇w|2q for all t ∈ (0, T )

for some C1 > 0 and lemma 3.10 yields

C1

∫
∂Ω

|∇w|2q ≤ 3q − 1
2q2

∫
Ω

|∇|∇w|q|2 + C2

∫
Ω

|∇w|2q for all t ∈ (0, T )

for some positive C2. Lemma 3.9 shows
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C2

∫
Ω

|∇w|2q ≤ C3 + C3

⎛
⎝∫

Ω

|∇|∇w|q|2
⎞
⎠

λ1

for all t ∈ (0, T )

with λ1 =
nq
s −n

2
1−n

2 +nq
s

< 1 and some positive constant C3. Young’s inequality then gives us C4 > 0 such that

C3

⎛
⎝∫

Ω

|∇|∇w|q|2
⎞
⎠

λ1

≤ 3q − 1
2q2

∫
Ω

|∇|∇w|q|2 + C4 for all t ∈ (0, T )

and thereby we have proven

∫
∂Ω

|∇w|2q−2 ∂|∇w|2
∂ν

≤ 3q − 1
q2

∫
Ω

|∇|∇w|q|2 + C5 for all t ∈ (0, T )

for some positive constant C5. Integration by parts therefore results in

∫
Ω

|∇w|2q−2Δ|∇w|2 ≤ −q − 1
q2

∫
Ω

|∇|∇w|q|2 + C5 for all t ∈ (0, T ),

as claimed. �
3.1.3. Analysis of a coupled function

In this section we put some of the results of the previous chapter to use by applying them to our context. 
We begin by proving the crucial

Lemma 3.12. Let D ∈ C2 ([0,∞)) with

D(s) ≥ CD(s + 1)m−1 for all s ∈ [0,∞)

for some m ∈ R and CD > 0 as well as S ∈ C2 ([0,∞)) with

|S(s)| ≤ CS (s + 1)κ for all s ∈ [0,∞)

for some κ ∈ R with κ < m + 1 and CS > 0. Let T > 0 and (u, v) a classical solution to the differential 
equations in (KS) in Ω × (0, T ) with ∂u∂ν = ∂v

∂ν = 0 on ∂Ω × (0, T ). Furthermore let p0 ∈
(
n
2 (1 + κ−m), n

)
with p0 ≥ 1, Cp0 > 0 and ‖u‖L∞((0,T ),Lp0 (Ω)) ≤ Cp0 . Taking p and q from lemmata 3.1 and 3.2 we then 
have C > 0 such that

d
dt

⎡
⎣1
p

∫
Ω

(u + 1)p + 1
q

∫
Ω

|∇v|2q
⎤
⎦ + 2(p− 1)CD

(m + p− 1)2

∫
Ω

∣∣∣∇(u + 1)
m+p−1

2

∣∣∣2 + q − 1
2q2

∫
Ω

|∇|∇v|q|2

≤ C + C

∫
Ω

(u + 1)−m+p−1+2κ|∇v|2 + C

∫
Ω

(u + 1)2|∇v|2q−2

holds for any t ∈ (0, T ).
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Proof. We begin by computing

1
p

d
dt

∫
Ω

(u + 1)p =
∫
Ω

(u + 1)p−1ut

=
∫
Ω

(u + 1)p−1∇ · (D(u)∇u) −
∫
Ω

(u + 1)p−1∇ · (S(u)∇v)

= −(p− 1)
∫
Ω

D(u)(u + 1)p−2|∇u|2

+ (p− 1)
∫
Ω

S(u)(u + 1)p−2∇u · ∇v

≤ −(p− 1)CD

∫
Ω

(u + 1)m+p−3|∇u|2

+ (p− 1)CS

∫
Ω

(u + 1)κ+p−2|∇u||∇v| ∀t ∈ (0, T ),

using the assumed estimates for both D and S as well as integration by parts and continue by estimating 
the rightmost term. Note the positivity of the exponents according to (p2) and (p7). By Young’s inequality, 
we see that

∫
Ω

(u + 1)κ+p−2|∇u||∇v| =
∫
Ω

(u + 1)
m+p−3

2 |∇u| (u + 1)
−m+p−1

2 +κ|∇v|

≤ CD

2CS

∫
Ω

(u + 1)m+p−3|∇u|2

+ CS

2CD

∫
Ω

(u + 1)−m+p−1+2κ|∇v|2 for all t ∈ (0, T ),

and so we have

1
p

d
dt

∫
Ω

(u + 1)p + (p− 1)CD

2

∫
Ω

(u + 1)m+p−3|∇(u + 1)|2

≤ (p− 1)C2
S

2CD

∫
Ω

(u + 1)−m+p−1+2κ|∇v|2 for all t ∈ (0, T ).

Using that

∂

∂t
|∇v|2 = 2∇v · ∇vt = 2∇v · ∇Δv − 2|∇v|2 + 2∇u · ∇v

as well as

Δ|∇v|2 = 2∇ · (D2v∇v) = 2|D2v|2 + 2∇v · ∇Δv,

lemma 3.11, which we may invoke due to lemma 3.4, yields some C1 > 0 such that
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1
q

d
dt

∫
Ω

|∇v|2q =
∫
Ω

|∇v|2q−2 ∂

∂t
|∇v|2

=
∫
Ω

|∇v|2q−2 (Δ|∇v|2 − 2|D2v|2 − 2|∇v|2 + 2∇u · ∇v
)

≤ −q − 1
q2

∫
Ω

|∇|∇v|q|2 − 2
∫
Ω

|∇v|2q−2|D2v|2 + 2
∫
Ω

|∇v|2q−2∇u · ∇v + C1

holds for all t ∈ (0, T ). We rearrange this to see that for any t ∈ (0, T ) we in point of fact have

1
q

d
dt

∫
Ω

|∇v|2q + q − 1
q2

∫
Ω

|∇|∇v|q|2 + 2
∫
Ω

|∇v|2q−2|D2v|2 ≤ 2
∫
Ω

|∇v|2q−2∇u · ∇v + C1,

and once again continue with the integral on the right-hand side. We employ Young’s inequality twice more 
to find

2
∫
Ω

|∇v|2q−2∇u · ∇v = −2
∫
Ω

u∇ ·
(
|∇v|2q−2∇v

)

= −2(q − 1)
∫
Ω

u|∇v|2q−4∇v · ∇|∇v|2 − 2
∫
Ω

u|∇v|2q−2Δv

≤ q − 1
8

∫
Ω

|∇v|2q−4|∇|∇v|2|2 + 2(q − 1)
∫
Ω

u2|∇v|2q−2

+ 2
n

∫
Ω

|∇v|2q−2|Δv|2 + n

2

∫
Ω

u2|∇v|2q−2

≤ q − 1
2q2

∫
Ω

|∇|∇v|q|2 +
[
2(q − 1) + n

2

] ∫
Ω

(u + 1)2|∇v|2q−2

+ 2
∫
Ω

|∇v|2q−2|D2v|2 for all t ∈ (0, T ),

wherein for the last step we used the pointwise estimate

|Δv|2 ≤ n|D2v|2.

After cancellation we see for all t ∈ (0, T )

1
q

d
dt

∫
Ω

|∇v|2q + q − 1
2q2

∫
Ω

|∇|∇v|q|2 ≤
[
2(q − 1) + n

2

] ∫
Ω

(u + 1)2|∇v|2q−2 + C1

which in total means

d
dt

⎡
⎣1
p

∫
Ω

(u + 1)p + 1
q

∫
Ω

|∇v|2q
⎤
⎦ + (p− 1)CD

2

∫
Ω

(u + 1)m+p−3|∇u|2 + q − 1
2q2

∫
Ω

|∇|∇v|q|2

≤ C2

∫
Ω

(u + 1)−m+p−1+2κ|∇v|2 + C2

∫
Ω

(u + 1)2|∇v|2q−2 + C2

for suitable C2 > 0 and all t ∈ (0, T ). �
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3.1.4. A series of applications of the Gagliardo–Nirenberg inequality
In order to compare the terms in lemma 3.12 we interpolate on the right-hand side via Gagliardo–

Nirenberg; in fact we do so four times in this chapter and stress the importance of the respective exponents.

Lemma 3.13. Under the assumptions from the previous lemma 3.12 and also taking θ and μ from lemma 3.1
as well as β1, β2, γ1 and γ2 from lemma 3.2, we can find a positive constant C such that

⎛
⎝∫

Ω

(u + 1)(−m+p−1+2κ)θ

⎞
⎠

1
θ

≤ C + C

⎛
⎝∫

Ω

∣∣∣∇(u + 1)
m+p−1

2

∣∣∣2
⎞
⎠

β1

,

⎛
⎝∫

Ω

|∇v|2θ′

⎞
⎠

1
θ′

≤ C + C

⎛
⎝∫

Ω

|∇ |∇v|q|2
⎞
⎠

γ1

,

⎛
⎝∫

Ω

(u + 1)2μ
⎞
⎠

1
μ

≤ C + C

⎛
⎝∫

Ω

∣∣∣∇(u + 1)
m+p−1

2

∣∣∣2
⎞
⎠

β2

and
⎛
⎝∫

Ω

|∇v|2(q−1)μ′

⎞
⎠

1
μ′

≤ C + C

⎛
⎝∫

Ω

|∇ |∇v|q|2
⎞
⎠

γ2

hold in (0, T ).

Proof. Firstly, for any t ∈ (0, T ) the Gagliardo–Nirenberg inequality in lemma 3.7 together with (θ1) gives 
us positive constants C1 and C2 such that for k := 2(−m+p−1+2κ)

m+p−1

∥∥∥(u + 1)
m+p−1

2

∥∥∥k
Lkθ(Ω)

≤ C1

∥∥∥∇(u + 1)
m+p−1

2

∥∥∥ka
L2(Ω)

∥∥∥(u + 1)
m+p−1

2

∥∥∥k(1−a)

L
2p0

m+p−1 (Ω)

+ C1

∥∥∥(u + 1)
m+p−1

2

∥∥∥k
L

2p0
m+p−1 (Ω)

≤ C2

⎡
⎢⎣1 +

⎛
⎝∫

Ω

∣∣∣∇(u + 1)
m+p−1

2

∣∣∣2
⎞
⎠

β1
⎤
⎥⎦

holds for all t ∈ (0, T ) with

−m + p− 1 + 2κ
m + p− 1 a =

n
2

(
−m+p−1+2κ

p0
− 1

θ

)
1 − n

2 + n(m+p−1)
2p0

= β1.

Due to (s1), for some C3 > 0 we can also estimate

‖|∇v|q‖
2
q

L
2θ′
q (Ω)

≤ C1 ‖∇|∇v|q‖
2
q c

L2(Ω) ‖|∇v|q‖
2
q (1−c)

L
s
q (Ω)

+ C1 ‖|∇v|q‖
2
q

L
s
q (Ω)

≤ C3

⎡
⎣1 +

⎛
⎝∫

Ω

|∇ |∇v|q|2
⎞
⎠

γ1⎤⎦
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for

1
q
c =

n
2 (2

s − 1
θ′ )

1 − n
2 + nq

s

= γ1

and all times t ∈ (0, T ). Since (μ1) holds, we analogously have a positive constant C4 such that

∥∥∥(u + 1)
m+p−1

2

∥∥∥ 4
m+p−1

L
4μ

m+p−1 (Ω)
≤ C1

∥∥∥∇(u + 1)
m+p−1

2

∥∥∥ 4
m+p−1 b

L2(Ω)

∥∥∥(u + 1)
m+p−1

2

∥∥∥ 4
m+p−1 (1−b)

L
2p0

m+p−1 (Ω)

+ C1

∥∥∥(u + 1)
m+p−1

2

∥∥∥ 4
m+p−1

L
2p0

m+p−1 (Ω)

≤ C4

⎡
⎢⎣1 +

⎛
⎝∫

Ω

∣∣∣∇(u + 1)
m+p−1

2

∣∣∣2
⎞
⎠

β2
⎤
⎥⎦

for any t ∈ (0, T ) with

2b
m + p− 1 =

n
2

(
2
p0

− 1
μ

)
1 − n

2 + n(m+p−1)
2p0

= β2.

Lastly, this time due to (s2), we find C5 > 0 fulfilling

‖|∇v|q‖
2(q−1)

q

L
2(q−1)μ′

q (Ω)
≤ C1 ‖∇|∇v|q‖

2(q−1)
q d

L2(Ω) ‖|∇v|q‖
2(q−1)

q (1−d)

L
s
q (Ω)

+ C1 ‖|∇v|q‖
2(q−1)

q

L
s
q (Ω)

≤ C5

⎡
⎣1 +

⎛
⎝∫

Ω

|∇ |∇v|q|2
⎞
⎠

γ2⎤⎦

for

q − 1
q

d =
n
2 (2(q−1)

s − 1
μ′ )

1 − n
2 + nq

s

= γ2

for any t ∈ (0, T ).
We note that the Gagliardo–Nirenberg inequality indeed is applicable due to the following observations. 

Trivially we see

2(−m + p− 1 + 2κ)θ
m + p− 1 > 1

and we quickly find

2θ′

q
> 1

and

θ <
q

q − 2

as well as
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4μ
m + p− 1 > 1

and

μ >
m + p− 1

4

to be equivalent by pairs. Additionally,

2(q − 1)μ′

q
> 1

holds if and only if

1
μ

>
2 − q

q

is true. The first three requirements are secured by (θ1), (θ2) and (μ2) respectively and the negative 
right-hand side in the last line completes this set of computations, which means that our previous inequalities 
truly hold. �

This step immediately results in

Lemma 3.14. Keeping the assumptions from lemma 3.13 we have

∫
Ω

(u + 1)−m+p−1+2κ|∇v|2 ≤ C

⎡
⎢⎣1 +

⎛
⎝∫

Ω

∣∣∣∇(u + 1)
m+p−1

2

∣∣∣2
⎞
⎠

β1
⎤
⎥⎦
⎡
⎣1 +

⎛
⎝∫

Ω

|∇ |∇v|q|2
⎞
⎠

γ1⎤⎦

and

∫
Ω

(u + 1)2|∇v|2q−2 ≤ C

⎡
⎢⎣1 +

⎛
⎝∫

Ω

∣∣∣∇(u + 1)
m+p−1

2

∣∣∣2
⎞
⎠

β2
⎤
⎥⎦
⎡
⎣1 +

⎛
⎝∫

Ω

|∇ |∇v|q|2
⎞
⎠

γ2⎤⎦

with some C > 0 and for all t ∈ (0, T ) respectively.

Proof. The Hölder inequality allows for decomposing the integrals into their respective factors for which we 
then employ lemma 3.13. This means everything follows from the cited lemma as well as the estimates

∫
Ω

(u + 1)−m+p−1+2κ|∇v|2 ≤

⎛
⎝∫

Ω

(u + 1)(−m+p−1+2κ)θ

⎞
⎠

1
θ
⎛
⎝∫

Ω

|∇v|2θ′

⎞
⎠

1
θ′

and

∫
Ω

(u + 1)2|∇v|2q−2 ≤

⎛
⎝∫

Ω

(u + 1)2μ
⎞
⎠

1
μ
⎛
⎝∫

Ω

|∇v|2(q−1)μ′

⎞
⎠

1
μ′

which hold for all t ∈ (0, T ) respectively. �
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3.1.5. An ordinary differential inequality
Using lemma 3.3 and the fact that the numbers βj and γj for j ∈ {1, 2} from lemma 3.2 satisfy

βj + γj < 1 for j ∈ {1, 2},

we proceed to derive

Lemma 3.15. Let D ∈ C2 ([0,∞)) with

D(s) ≥ CD(s + 1)m−1 for all s ∈ [0,∞)

for some m ∈ R and CD > 0 as well as S ∈ C2 ([0,∞)) with

|S(s)| ≤ CS(s + 1)κ for all s ∈ [0,∞)

for some κ ∈ R with κ < m + 1 and CS > 0. Let T > 0 and (u, v) a classical solution to the differential 
equations in (KS) in Ω × (0, T ) with ∂u∂ν = ∂v

∂ν = 0 on ∂Ω × (0, T ). Furthermore let p0 ∈
(
n
2 (1 + κ−m), n

)
with p0 ≥ 1, Cp0 > 0 and ‖u‖L∞((0,T ),Lp0 (Ω)) ≤ Cp0 . Taking p, θ and μ from lemma 3.1 as well as q, β1, 
β2, γ1 and γ2 from lemma 3.2, we can find λ > 0 as well as a positive constant C satisfying

ẏ(t) + 1
C
yλ(t) ≤ C for all t ∈ (0, T )

for y(t) := 1
p

∫
Ω(u + 1)p + 1

q

∫
Ω|∇v|2q.

Proof. Due to lemmata 3.3, 3.12 and 3.14 we already know that for the parameters from lemma 3.2 there 
are C1 > 0 and C2 > 0 such that

d
dt

⎡
⎣1
p

∫
Ω

(u + 1)p + 1
q

∫
Ω

|∇v|2q
⎤
⎦ + 2(p− 1)CD

(m + p− 1)2

∫
Ω

∣∣∣∇(u + 1)
m+p−1

2

∣∣∣2 + q − 1
2q2

∫
Ω

|∇|∇v|q|2

≤ C1 + C1

⎡
⎢⎣1 +

⎛
⎝∫

Ω

∣∣∣∇(u + 1)
m+p−1

2

∣∣∣2
⎞
⎠

β1
⎤
⎥⎦
⎡
⎣1 +

⎛
⎝∫

Ω

|∇|∇v|q|2
⎞
⎠

γ1⎤⎦

+ C1

⎡
⎢⎣1 +

⎛
⎝∫

Ω

|∇u
m+p−1

2 |2
⎞
⎠

β2
⎤
⎥⎦
⎡
⎣1 +

⎛
⎝∫

Ω

|∇|∇v|q|2
⎞
⎠

γ2⎤⎦

≤ C2 + (p− 1)CD

(m + p− 1)2

∫
Ω

∣∣∣∇(u + 1)
m+p−1

2

∣∣∣2 + q − 1
4q2

∫
Ω

|∇|∇v|q|2

holds for any t ∈ (0, T ). This shows that with some C3 > 0 we have

d
dt

⎡
⎣1
p

∫
Ω

(u + 1)p + 1
q

∫
Ω

|∇v|2q
⎤
⎦ + C3

∫
Ω

∣∣∣∇(u + 1)
m+p−1

2

∣∣∣2 + C3

∫
Ω

|∇ |∇v|q|2 ≤ C2

for all t ∈ (0, T ). Employing the Gagliardo–Nirenberg interpolation inequality once more, we can compare 
the integral containing the gradient of u to the first term in y. If we estimate
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∫
Ω

(u + 1)p =
∥∥∥(u + 1)

m+p−1
2

∥∥∥ 2p
m+p−1

L
2p

m+p−1 (Ω)

≤ C4

∥∥∥∇(u + 1)
m+p−1

2

∥∥∥ 2p
m+p−1λ2

L2(Ω)

∥∥∥(u + 1)
m+p−1

2

∥∥∥ 2p
m+p−1 (1−λ2)

L
2p0

m+p−1 (Ω)

+ C4

∥∥∥(u + 1)
m+p−1

2

∥∥∥ 2p
m+p−1

L
2p0

m+p−1 (Ω)

≤ C5

⎡
⎢⎣1 +

⎛
⎝∫

Ω

∣∣∣∇(u + 1)
m+p−1

2

∣∣∣2
⎞
⎠

pλ2
m+p−1

⎤
⎥⎦

for some positive constants C4, C5 and λ2, and apply lemma 3.9 to v, we see that indeed

ẏ + 1
C6

yλ ≤ C6 for all t ∈ (0, T ),

again for some positive constants C6 and λ. �
Proof of theorem 2.2 for κ < m + 1. A comparison argument for ordinary differential equations shows that 
in C̃ := max

{
y0, C

2
λ

}
we have an upper bound for any solution y ∈ C1 (0, Tmax) to

{
ẏ ≤ − 1

C yλ + C in (0, Tmax),
y(0) = y0,

and thus according to lemma 3.15 for any p > 1 we find a constant Cp > 0 that admits the inequality

‖u(·, t)‖Lp(Ω) ≤ Cp for all t ∈ (0, Tmax).

Together with lemmata 3.4 and 3.5 this proves the first portion of theorem 2.2 in light of the extensibility 
criterion in lemma 2.1. �
3.2. Part II: κ ≥ m + 1

In many ways this section follows the previous, and so we may focus on outlining the main differences.
Let us assume ‖u‖L∞((0,T ),Lp0 (Ω)) ≤ Cp0 with some p0 > n(κ −m) ≥ n and Cp0 > 0, which by lemma 3.4

immediately results in

‖v(·, t)‖W 1,q(Ω) ≤ C

for arbitrary q ≥ 1, some C > 0 and all times t ∈ (0, T ) if (u, v) solves the second equation in (KS) in 
Ω × (0, T ). Again some parameters need to be fixed and their existence verified. This is the purpose of

Lemma 3.16. Given m ∈ R and κ ∈ R with κ ≥ m + 1 as well as p0 > n(κ −m) for each arbitrarily large 
p > p0 with

p > m + 1 − 2κ + p0 > m + 1 − 2κ, (p1’)

p > 4p0 + 1 −m (p2’)

and
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p > 3m + 1 − 4κ (p3’)

there is some s ∈ R with

s >
1

1
n − κ−m

p0

> 2 (s1’)

such that for

q = s
m + p− 1

2p0
>

m + p− 1
2p0

> 2 >
2p0

2 + p0
(q1’)

we have

s

2(q − 1) < 1. (sq’)

Proof. Let us first remark on (s1’): Since the denominator is positive and because of κ ≥ m + 1 we have 
s > 1

1
n− 1

p0
which is bigger than 2 due to p0 > 2n

n+2 .
The desired inequality

1 >
s

2(q − 1) = p0q

(q − 1)(m + p− 1)

is equivalent to

[(m + p− 1) − p0] >
m + p− 1

q

and this in turn follows from

q >
1

1 − p0
m+p−1

.

Herein the right-hand side can be estimated from above by 4
3 which is a trivial lower bound for q in light 

of (q1’). �
Again we need some Hölder and Gagliardo–Nirenberg exponents consisting of the previously defined 

parameters. We have to verify that the above choices are admissible for the intended inequalities and do so 
in the following

Lemma 3.17. Given m ∈ R and κ ∈ R with κ ≥ m + 1 as well as p0 > n(κ −m) for the quantities p, q and 
s of lemma 3.16 there are two numbers θ > 1 and μ > 1 satisfying

θ >
m + p− 1

2(−m + p− 1 + 2κ) (θ1’)

and

θ >
p0

−m + p− 1 + 2κ (θ2’)

as well as

θ <
s (θ3’)
s− 2
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and

θ <
q

q − 2 . (θ4’)

Furthermore,

μ >
p0

2 (μ1’)

and

μ >
m + p− 1

4 , (μ2’)

hold and for the conjugate exponents θ′ = θ
θ−1 and μ′ = μ

μ−1 we can achieve

2θ′

q
> 1 (θ5’)

as well as

2(q − 1)μ′

q
> 1. (μ3’)

Proof. The lower bounds for θ are less than 1 due to (p3’) and (p1’) respectively while the upper bounds 
obviously are larger than 1.

While (θ5’) is equivalent to

1
θ′

<
2
q

and therefore guaranteed by (θ4’), the fact that q > 2 is enough to show

1 − 1
μ
<

2(q − 1)
q

and thereby (μ3’). �
We close this chapter by proving that these choices allow for the employment of lemma 3.3:

Lemma 3.18. We assume p0 > n(κ −m) for some m ∈ R and κ ∈ R with κ ≥ m + 1 and the quantities p, 
s, q, θ and μ to be as in lemmata 3.16 and 3.17. We define

β1 :=
n
2

(
−m+p−1+2κ

p0
− 1

θ

)
1 − n

2 + n(m+p−1)
2p0

,

γ1 :=
n
2
( 2
s − 1

θ′

)
1 − n

2 + n(m+p−1)
2p0

,

β2 :=
n
2

(
2
p0

− 1
μ

)
1 − n

2 + n(m+p−1)
2p0

and
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γ2 :=
n
2

(
m+p−1

p0
− 2

s − 1
μ′

)
1 − n

2 + n(m+p−1)
2p0

.

For the quantities f := β1 + γ1 and g := β2 + γ2 we once more have that

f < 1 and g < 1

hold.

Remark. Note

nq

s
= n(m + p− 1)

2p0

and

2(q − 1)
s

= 2q
s

− 2
s

= m + p− 1
p0

− 2
s

and the resulting similarities between the quantities in this lemma and in the previous section.

Proof of lemma 3.18. Firstly we see that

1 > f =
n
2

(
−m+p−1+2κ

p0
− 1 + 2

s

)
1 − n

2 + n(m+p−1)
2p0

is equivalent to

2
n
− 1 + m + p− 1

p0
>

−m + p− 1 + 2κ
p0

− 1 + 2
s

and therefore we need to ensure

1
s
<

1
n
− κ−m

p0
.

This however is true since we have demanded p0 > n(κ −m) and s > 1
1
n−κ−m

p0
. On the other hand,

1 > g =
n
2

(
2
p0

− 1 + m+p−1
p0

− 2
s

)
1 − n

2 + n(m+p−1)
2p0

holds if and only if

2
n
− 1 + m + p− 1

p0
>

2
p0

− 1 + m + p− 1
p0

− 2
s
.

This is ensured by p0 > n and s > 0 which in combination yield 1
n > 1

p0
− 1

s . �
We then return to the previous chapter and repeat the necessary computations to obtain the same results 

as before meaning we can complete the proof for our theorem by carefully replacing the parameters used in 
the case κ < m + 1 by the ones defined in this section.
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