期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:482 |
Critical exponents for the fast diffusion equation with a nonlinear boundary condition | |
Article | |
Sato, Ryuichi1  Takahashi, Jin2  | |
[1] Tohoku Univ, Math Inst, Aoba Ku, Sendai, Miyagi 9808578, Japan | |
[2] Tokyo Inst Technol, Dept Math & Comp Sci, Tokyo 1528552, Japan | |
关键词: Fast diffusion equation; Nonlinear boundary condition; Blow-up; Critical exponents; | |
DOI : 10.1016/j.jmaa.2019.123526 | |
来源: Elsevier | |
【 摘 要 】
In this paper we consider the fast diffusion equation partial derivative(t)u = Delta(u(m)) (x is an element of Omega, t > 0) with a nonlinear boundary condition partial derivative(v)u(m) = u(p) (x is an element of partial derivative Omega, t > 0), where 0 < m < 1, p > 0, Omega subset of R-N is a smooth domain and N >= 1. We prove that p0 = (m + 1)/2 is the critical global existence exponent for the cases Omega = R-N \ (B-1) over bar (N >= 2) and Omega=B-1:= {x is an element of R-N :vertical bar x vertical bar < 1} (N >= 1). (C)2019 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jmaa_2019_123526.pdf | 291KB | download |