期刊论文详细信息
Boundary Value Problems | |
The critical exponent for fast diffusion equation with nonlocal source | |
Linghua Kong1  Qing Tian2  Chunxiao Yang2  Yingxue Wu2  | |
[1] School of Science, Dalian Ocean University;School of Science, Xi’an University of Architecture and Technology; | |
关键词: Critical exponents; Fast diffusion; Nonlocal; Global solutions; Blow-up; | |
DOI : 10.1186/s13661-019-1282-1 | |
来源: DOAJ |
【 摘 要 】
Abstract This paper considers the Cauchy problem for fast diffusion equation with nonlocal source ut=Δum+(∫Rnuq(x,t)dx)p−1qur+1 $u_{t}=\Delta u^{m}+ (\int_{\mathbb{R}^{n}}u^{q}(x,t)\,dx )^{\frac{p-1}{q}}u^{r+1}$, which was raised in [Galaktionov et al. in Nonlinear Anal. 34:1005–1027, 1998]. We give the critical Fujita exponent pc=m+2q−n(1−m)−nqrn(q−1) $p_{c}=m+\frac{2q-n(1-m)-nqr}{n(q-1)}$, namely, any solution of the problem blows up in finite time whenever 1
pc $p>p_{c}$.
【 授权许可】
Unknown