期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:474 |
Pluricapacity and approximation numbers of composition operators | |
Article | |
Li, Daniel1,2  Queffelec, Herve3,4  Rodriguez-Piazza, Luis5,6  | |
[1] Univ Artois, LML, EA 2462, Rue Jean Souvraz,SP 18, F-62300 Lens, France | |
[2] Fac Jean Perrin, Federat CNRS Nord Pas de Calais FR 2956, Rue Jean Souvraz,SP 18, F-62300 Lens, France | |
[3] Univ Lille Nord France, USTL, Lab Paul Painleve, CNRS,UMR 8524, F-59655 Villeneuve Dascq, France | |
[4] Federat CNRS Nord Pas de Calais FR 2956, F-59655 Villeneuve Dascq, France | |
[5] Univ Seville, Fac Matemat, Dept Anal Matemat, Calle Tarfia S-N, E-41012 Seville, Spain | |
[6] IMUS, Calle Tarfia S-N, E-41012 Seville, Spain | |
关键词: Approximation numbers; Composition operator; Hardy space; Hyperconvex domain; Monge-Ampere capacity; Zakharyuta conjecture; | |
DOI : 10.1016/j.jmaa.2019.02.041 | |
来源: Elsevier | |
【 摘 要 】
For suitable bounded hyperconvex sets Omega in C-N, in particular the ball or the polydisk, we give estimates for the approximation numbers of composition operators C-phi: H-2 (Omega) -> H-2(Omega) when phi(Omega) is relatively compact in Omega, involving the Monge-Ampere capacity of phi(Omega). (C) 2019 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jmaa_2019_02_041.pdf | 558KB | download |