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1. Introduction

Let D be the unit disk in C, H2(D) the corresponding Hardy space, ϕ a non-constant analytic self-map of 
D and Cϕ : H2(D) → H2(D) the associated composition operator. In [39], we proved a formula connecting 
the approximation numbers an(Cϕ) of Cϕ, and the Green capacity of the image ϕ(D) in D, namely, when 
[ϕ(D)] ⊂ D, we have the so-called “spectral radius type” formula:

β(Cϕ) := lim
n→∞

[an(Cϕ)]1/n = exp
(
− 1/Cap [ϕ(D)]

)
, (1.1)

where Cap [ϕ(D)] is the Green capacity of ϕ(D).
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A consequence of that formula was the following non-trivial fact, first proved in [38]:

‖ϕ‖∞ = 1 =⇒ an(Cϕ) ≥ δ e−nεn where εn → 0+ . (1.2)

In other terms, as soon as ‖ϕ‖∞ = 1, we cannot hope better for the numbers an(Cϕ) than a subexponential 
decay, however slowly εn tends to 0.

In [40], we pursued that line of investigation in dimension N ≥ 2, namely on H2(DN ), and showed that 
in some cases the implication (1.2) still holds ([40, Theorem 3.1]):

‖ϕ‖∞ = 1 =⇒ an(Cϕ) ≥ δ e−n1/Nεn where εn → 0+ (1.3)

(the substitution of n by n1/N is mandatory as shown by the results of [4]).

We show in this paper that, in general, for non-degenerate symbols, we have similar formulas to (1.1) at 
our disposal for the parameters:

β−
N (Cϕ) = lim inf

n→∞
[anN (Cϕ)]1/n and β+

N (Cϕ) = lim sup
n→∞

[anN (Cϕ)]1/n . (1.4)

These bounds are given in terms of the Monge–Ampère (or Bedford–Taylor) capacity of ϕ(DN) in DN , a 
notion which is the natural multidimensional extension of the Green capacity when the dimension N is ≥ 2
([40, Theorem 6.4]). We show that we have β−

N (Cϕ) = β+
N (Cϕ) for well-behaved symbols.

The Monge–Ampère capacity is defined relative to a domain Ω in CN and the natural assumption is that 
Ω is a hyperconvex domain. For such domains, Hardy spaces H2(Ω) can be defined ([46]) and for ϕ : Ω → Ω
analytic, we can define, formally, a composition operator Cϕ : H2(Ω) → H2(Ω). We begin hence this paper 
by introducing in Section 2 various notions from the theory of several complex variables. In Section 3 we 
recall the definition of the Monge–Ampère capacity and the Zakharyuta–Nivoche formulae that allow us 
to prove our main estimates: let Ω be a bounded hyperconvex domain in CN and ϕ : Ω → Ω analytic and 
non-degenerate such that ϕ(ω) ⊆ Ω; then:

– if Ω is moreover a strongly regular and Runge domain, we have:

exp
[
− 2π

(
N !

Cap [ϕ(Ω)]

)1/N]
≤ β−

N (Cϕ)

(Theorem 4.3);
– if Ω is moreover a good complete Reinhard domain, we have:

β+
N (Cϕ) ≤ exp

[
− 2π

(
N !

Cap [ϕ(Ω)]

)1/N]

(Theorem 4.7).

In some cases, we have Cap [ϕ(Ω)] = Cap [ϕ(Ω)], so β−
N (Cϕ) = β+

N (Cϕ). Finally, in Section 4.5, we give some 
other consequences on composition operators.
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2. Notations and background

2.1. Complex analysis

Let Ω be a domain (i.e. a connected open subset) in CN ; a function u : Ω → R ∪ {−∞} is said plurisub-
harmonic (psh) if it is u.s.c. and if for every complex line L = {a + zw ; z ∈ C} (a ∈ Ω, w ∈ C

N ), the 
function z �→ u(a + zw) is subharmonic in Ω ∩L. We denote PSH(Ω) the set of plurisubharmonic functions 
in Ω. If f : Ω → C is holomorphic, then log |f | and |f |α, α > 0, are psh. Every real-valued convex function is 
psh (convex functions are those whose composition with all R-linear isomorphisms are subharmonic, though 
plurisubharmonic functions are those whose composition with all C-linear isomorphisms are subharmonic: 
see [30, Theorem 2.9.12]).

Let ddc = 2i∂∂̄, and (ddc)N = ddc ∧ · · · ∧ ddc (N times). When u ∈ PSH(Ω) ∩ C2(Ω), we have:

(ddcu)N = 4NN ! det
(

∂2u

∂zj∂z̄k

)
dλ2N (z) ,

where dλ2N (z) = (i/2)Ndz1 ∧ dz̄1 ∧ · · · ∧ dzN ∧ dz̄N is the usual volume in CN . In general, the current 
(ddcu)N can be defined for all locally bounded u ∈ PSH(Ω) and is actually a positive measure on Ω ([5]).

Given p1, . . . , pJ ∈ Ω, the pluricomplex Green function with poles p1, . . . , pJ and weights c1, . . . , cN > 0
is defined as:

g(z) = g(z, p1, . . . , pJ) = sup{v(z) ; v ∈ PSH(Ω) , v ≤ 0 and

v(z) ≤ cj log |z − pj | + O (1) , ∀j = 1, . . . , J} .

In particular, for J = 1 and p1 = a, c1 = 1, g( · , a) is the pluricomplex Green function of Ω with pole a ∈ Ω. 
If 0 ∈ Ω and a = 0, we denote it by gΩ and call it the pluricomplex Green function of Ω; hence:

ga(z) = g(z, a) = sup{u(z) ; u ∈ PSH(Ω) , u ≤ 0 and u(z) ≤ log |z − a| + O (1)} .

Let Ω be an open subset of CN . A continuous function ρ : Ω → R is an exhaustion function if there exists 
a ∈ (−∞, +∞] such that ρ(z) < a for all z ∈ Ω, and the set Ωc = {z ∈ Ω ; ρ(z) < c} is relatively compact 
in Ω for every c < a.

A domain Ω in CN is said hyperconvex if there exists a continuous psh exhaustion function ρ : Ω → (−∞, 0)
(see [30, p. 80]). We may of course replace the upper bound 0 by any other real number. Without this upper 
bound, Ω is said pseudoconvex.

Let Ω be a hyperconvex domain, with negative continuous psh exhaustion function ρ and μρ,r the asso-
ciated Demailly–Monge–Ampère measures, defined as:

μρ,r = (ddcρr)N − 1Ω\BΩ,ρ(r)(ddcρ)N , (2.1)

for r < 0, where ρr = max(ρ, r) and:

BΩ,ρ(r) = {z ∈ Ω ; ρ(z) < r} .

The nonnegative measure μρ,r is supported by SΩ,ρ(r) := {z ∈ Ω ; ρ(z) = r}.
If ∫

(ddcρ)N < ∞ ,
Ω
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these measures, considered as measures on Ω, weak-∗ converge, as r goes to 0, to a positive measure μ = μΩ,ρ

supported by ∂Ω and with total mass 
∫
Ω(ddcρ)N ([16, Théorème 3.1], or [30, Lemma 6.5.10]).

For the pluricomplex Green function ga with pole a, we have (ddcga)N = (2π)Nδa, where δa is 
the Dirac measure at a ([16, Théorème 4.3]) and ga(a) = −∞, so a ∈ BΩ,ga(r) for every r < 0 and 

1Ω\BΩ,ga (r)(ddcga)N = 0. Hence the Demailly–Monge–Ampère measure μga,r is equal to 
(
ddc(ga)r

)N . By 

[50, Lemma 1], we have (1/|r|) 
(
ddc(ga)r

)N = uB̄Ω,ga (r),Ω, the relative extremal function of B̄Ω,ga(r) = {z ∈
Ω ; ga(z) ≤ r} in Ω (see (3.2) for the definition), and this measure is supported, not only by SΩ,ga(r), but 
merely by the Shilov boundary of B̄Ω,ga(r) (see Section 2.2.1 for the definition).

Since (ddcga)N = (2π)Nδa has mass (2π)N < ∞, these measures weak-∗ converge, as r goes to 0, to 
a positive measure μ = μΩ,ga supported by ∂Ω with mass (2π)N . Demailly ([16, Définition 5.2]) call the 
measure 1

(2π)N μΩ,ga the pluriharmonic measure of a. When Ω is balanced (az ∈ Ω for every z ∈ Ω and 

|a| = 1), the support of this pluriharmonic measure is the Shilov boundary of Ω ([50, very end of the paper]).

A bounded symmetric domain of CN is a bounded open and convex subset Ω of CN which is circled 
(az ∈ Ω for z ∈ Ω and |a| ≤ 1) and such that for every point a ∈ Ω, there is an involutive bi-holomorphic 
map γ : Ω → Ω such that a is an isolated fixed point of γ (equivalently, γ(a) = a and γ′(a) = −id: see 
[51, Proposition 3.1.1]). For this definition, see [13, Definition 16 and Theorem 17], or [14, Definition 5 
and Theorem 4]. Note that the convexity is automatic (Hermann Convexity Theorem; see [27, p. 503 and 
Corollary 4.10]). É. Cartan showed that every bounded symmetric domain of CN is homogeneous, i.e. the 
group Γ of automorphisms of Ω acts transitively on Ω: for every a, b ∈ Ω, there is an automorphism γ
of Ω such that γ(a) = b (see [51, p. 250]). Conversely, every homogeneous bounded convex domain is 
symmetric, since σ(z) = −z is a symmetry about 0 (see [51, p. 250] or [26, Remark 2.1.2 (e)]). Moreover, 
each automorphism extends continuously to Ω (see [22]).

The unit ball BN and the polydisk DN are examples of bounded symmetric domains. Another example 
is, for N = p q, bi-holomorphic to the open unit ball of M(p, q) = L(Cq, Cp) for the operator norm (see 
[27, Theorem 4.9]). Every product of bounded symmetric domains is still a bounded symmetric domain. In 
particular, every product of balls Ω = Bl1 × · · · × Blm , l1 + · · · + lm = N , is a bounded symmetric domain.

If Ω is a bounded symmetric domain, its gauge is a norm ‖ . ‖ on CN whose open unit ball is Ω. Hence 
every bounded symmetric domain is hyperconvex (take ρ(z) = ‖z‖ − 1).

2.2. Hardy spaces on hyperconvex domains

2.2.1. Hardy spaces on bounded symmetric domains
We begin by defining the Hardy space on a bounded symmetric domain, because this is easier.
The Shilov boundary (also called the Bergman–Shilov boundary or the distinguished boundary) ∂SΩ of 

a bounded domain Ω is the smallest closed set F ⊆ ∂Ω such that supz∈Ω |f(z)| = supz∈F |f(z)| for every 
function f holomorphic in some neighborhood of Ω (see [13, § 4.1]).

When Ω is a bounded symmetric domain, it is also, since Ω is convex, the Shilov boundary of the algebra 
A(Ω) of the continuous functions on Ω which are holomorphic in Ω (because every function f ∈ A(Ω) can 
be approximated by fε with fε(z) = f

(
εz0 + (1 − ε)z

)
, where z0 ∈ Ω is given: see [20, pp. 152–154]).

The Shilov boundary of the ball BN is equal to its topological boundary, but the Shilov boundary of the 
bidisk is ∂SD2 = {(z1, z2) ∈ C

2 ; |z1| = |z2| = 1}, whereas, its usual boundary ∂D2 is (T ×D) ∪ (D×T); for 
the unit ball BN , the Shilov boundary is equal to the usual boundary SN−1 ([13, § 4.1]). Another example 
of a bounded symmetric domain, in C3, is the set Ω = {(z1, z2, z3) ∈ C

3 ; |z1|2 + |z2|2 < 1 , |z3| < 1} and 
its Shilov boundary is ∂SΩ = {(z1, z2, z3) ; |z1|2 + |z2|2 = 1 , |z3| = 1}. For p ≥ q, the matrix A is in the 
topological boundary of M(p, q) if and only if ‖A‖ = 1, but A is in the Shilov boundary if and only if 
A∗A = Iq; therefore the two boundaries coincide if and only if q = 1, i.e. Ω = BN (see [14, Example 2, 
p. 30]).



1580 D. Li et al. / J. Math. Anal. Appl. 474 (2019) 1576–1600
Equivalently (see [24, Corollary 9], or [13, Theorem 33], [14, Theorem 10]), ∂SΩ is the set of the extreme 
points of the convex set Ω.

The Shilov boundary ∂SΩ is invariant by the group Γ of automorphisms of Ω and the subgroup 
Γ0 = {γ ∈ Γ ; γ(0) = 0} act transitively on ∂SΩ (see [22]). A theorem of H. Cartan states that the 
elements of Γ0 are linear transformations of CN and commute with the rotations (see [24, Theorem 1] or 
[26, Proposition 2.1.8]). It follows that the Shilov boundary of a bounded symmetric domain Ω coincides 
with its topological boundary only for Ω = BN (see [35, p. 572] or [36, p. 367]); in particular the open unit 
ball of CN for the norm ‖ . ‖p, 1 < p < ∞, is never a bounded symmetric domain, unless p = 2.

The unique Γ0-invariant probability measure σ on ∂SΩ is the normalized surface area (see [22]). Then 
the Hardy space H2(Ω) is the space of all complex-valued holomorphic functions f on Ω such that:

‖f‖H2(Ω) :=
(

sup
0<r<1

∫
∂SΩ

|f(rξ)|2 dσ(ξ)
)1/2

is finite (see [22] and [23]). It is known that the integrals in this formula are non-decreasing as r increases 
to 1, so we can replace the supremum by a limit. The same definition can be given when Ω is a bounded 
complete Reinhardt domain (see [1]).

The space H2(Ω) is a Hilbert space (see [22, Theorem 5]) and for every z ∈ Ω, the evaluation map 
f ∈ H2(Ω) �→ f(z) is uniformly bounded on compact subsets of Ω, by a constant depending only on that 
compact set, and on Ω ([22, Lemma 3]).

For every f ∈ H2(Ω), there exists a boundary values function f∗ such that ‖fr − f∗‖L2(∂SΩ) −→
r→1

0, where 

fr(z) = f(rz) ([9, Theorem 3]), and the map f ∈ H2(Ω) �→ f∗ ∈ L2(∂SΩ) is an isometric embedding ([22, 
Theorem 6]).

2.2.2. Hardy spaces on hyperconvex domains
For hyperconvex domains, the definition of Hardy spaces is more involved. It was done by E. Poletsky 

and M. Stessin ([46, Theorem 6]). Those domains are associated to a continuous negative psh exhaustion 
function ρ on Ω and the definition of the Hardy spaces uses the Demailly–Monge–Ampère measures. The 
space H2

ρ(Ω) is the space of all holomorphic functions f : Ω → C such that:

sup
r<0

∫
SΩ,ρ(Ω)

|f |2 dμρ,r < ∞

and its norm is defined by:

‖f‖H2
ρ(Ω) = sup

r<0

(
1

(2π)N

∫
SΩ,ρ(Ω)

|f |2 dμρ,r

)1/2

.

We can replace the supremum by a limit since the integrals are non-decreasing as r increases to 0 ([16, 
Corollaire 1.9]).

The space H∞(Ω) of bounded holomorphic functions in Ω is contained in H2
ρ(Ω) (see [46], remark before 

Lemma 3.4).
These spaces H2

ρ(Ω) are Hilbert spaces ([46, Theorem 4.1]), but depends on the exhaustion function ρ
(even when N = 1: see for instance [48]). Nevertheless, they all coincide, with equivalent norms, for the 
functions ρ for which the measure (ddcρ)N is compactly supported ([46, Lemma 3.4]); this is the case when 
ρ(z) = g(z, a) is the pluricomplex Green function with pole a ∈ Ω (because then (ddcρ)N = (2π)Nδa: see 
[16, Théorème 4.3], or [30, Theorem 6.3.6]).
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When Ω is the ball BN and ρ(z) = log ‖z‖2, then (ddcρ)N = C δ0 and μρ,r = (2π)Ndσt, where dσt is the 
normalized surface area on the sphere of radius t := er (see [46, Section 4] or [17, Example 3.3]). When Ω
is the polydisk DN and ρ(z) = log ‖z‖∞, then (ddcρ)N = (2π)Nδ0 ([18, Corollary 5.4]) and 1

(2π)N μρ,r is the 

Lebesgue measure of the torus rTN (see [17, Example 3.10]). Note that in [17] and [18], the operator dc is 
defined as i

2π (∂̄ − ∂) instead of i(∂̄ − ∂), as usually used.
In these two cases, the Hardy spaces are the same as the usual ones (see [2, Remark 5.2.1]). Actually, the 

two notions of Hardy spaces for a bounded symmetric domain are the same.

Proposition 2.1. Let Ω be a bounded symmetric domain in CN . Then the Hardy space H2(Ω) coincides with 
the Poletsky–Stessin Hardy space H2

gΩ
(Ω), with equality of the norms.

In the sequel, we only consider the exhaustion function ρ = gΩ; hence we will write BΩ(r), SΩ(r) and 
H2(Ω) instead of BΩ,ρ(r), SΩ,ρ(r) and H2

ρ(Ω).

Proof. First let us note that if ‖ . ‖ is the norm whose open unit ball is Ω, then gΩ(z) = log ‖z‖ (see [7, 
Proposition 3.3.2]).

Let μΩ be the measure which is the ∗-weak limit of the Demailly–Monge–Ampère measures μr =(
ddc(gΩ)r

)N . We saw that it is supported by ∂SΩ. By the remark made in [16, pp. 536–537], since the 
automorphisms of Ω continuously extend on ∂Ω, the measure μΩ is Γ-invariant. By unicity, the harmonic 
measure μ̃Ω = (2π)−NμΩ at 0 hence coincides with the normalized area measure on ∂SΩ. We have, for 
f : Ω → C holomorphic and 0 < s < 1:∫

∂SΩ

|f(sz)|2 dμ̃Ω(z) =
∫
∂Ω

|f(sz)|2 dμ̃Ω(z) = lim
r→0

1
(2π)N

∫
SΩ(r)

|f(sz)|2 dμr(z) ,

because z �→ |f(sz)|2 is continuous on Ω. Now, since gΩ(z) = log ‖z‖, we have SΩ(r) = er∂Ω and (gΩ)r(z) +
t = (gΩ)r+t(sz); hence μr(sA) = μr+t(A) for every Borel subset A of ∂Ω, where t = log s. It follows that:∫

SΩ(r)

|f(sz)|2 dμr(z) =
∫

SΩ(r+t)

|f(ζ)|2 dμr+t(ζ) .

By letting r and t going to 0, we get:

‖f‖2
H2(Ω) = lim

r,t→0

1
(2π)N

∫
SΩ(r+t)

|f(ζ)|2 dμr+t(ζ) = ‖f‖2
H2

gΩ
;

hence f ∈ H2(Ω) if and only if f ∈ H2
g0

(Ω), with the same norms. �
We have ([46, Theorem 3.6]):

Proposition 2.2 (Poletsky–Stessin). Let Ω be a hyperconvex domain in CN . For every z ∈ Ω, the evaluation 
map f ∈ H2(Ω) �→ f(z) is uniformly bounded on compact subsets of Ω, by a constant depending only on 
that compact set, and on Ω.

Hence H2(Ω) has a reproducing kernel, defined by:

f(a) = 〈f,Ka〉 , for f ∈ H2(Ω) , (2.2)

and for each r < 0:
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Lr := sup
a∈BΩ(r)

‖Ka‖2 < ∞ . (2.3)

2.3. Composition operators

A Schur map, associated with the bounded hyperconvex domain Ω, is a non-constant analytic map of Ω
into itself. It is said to be non-degenerate if its Jacobian is not identically null. It is equivalent to say that 
the differential ϕ′(a) : CN → C

N is an invertible linear map for at least one point a ∈ Ω. In [4], we used 
the terminology truly N -dimensional. Then, by the implicit function theorem, this is equivalent to say that 
ϕ(Ω) has non-void interior. We say that the Schur map ϕ is a symbol if it defines a bounded composition 
operator Cϕ : H2(Ω) → H2(Ω) by Cϕ(f) = f ◦ ϕ.

Let us recall that although any Schur function generates a bounded composition operator on H2(D), this is 
no longer the case on H2(DN ) as soon as N ≥ 2, as shown for example by the Schur map ϕ(z1, z2) = (z1, z1). 
Indeed (see [3]), if say N = 2, taking f(z) =

∑n
j=0 z

j
1z

n−j
2 , we see that:

‖f‖2 =
√
n + 1 while ‖Cϕf‖2 = ‖(n + 1)zn1 ‖2 = n + 1 .

The same phenomenon occurs on H2(BN ) ([42]; see also [11], [12], and [15]; see also [46]).

2.4. s-numbers of operators on a Hilbert space

We begin by recalling a few operator-theoretic facts. Let H be a Hilbert space. The approximation 
numbers an(T ) = an of an operator T : H → H are defined as:

an = inf
rank R<n

‖T −R‖ , n = 1, 2, . . . (2.4)

The operator T is compact if and only if limn→∞ an(T ) = 0.
According to a result of Allahverdiev [10, p. 155], an = sn, the n-th singular number of T , i.e. the n-th 

eigenvalue of |T | :=
√
T ∗T when those eigenvalues are rearranged in non-increasing order.

The n-th width dn(K) of a subset K of a Banach space Y measures the defect of flatness of K and is by 
definition:

dn(K) = inf
dim E<n

[
sup
f∈K

dist (f,E)
]
, (2.5)

where E runs over all subspaces of Y with dimension < n and where dist (f, E) denotes the distance of f
to E. If T : X → Y is an operator between Banach spaces, the n-th Kolmogorov number dn(T ) of T is the 
nth-width in Y of T (BX) where BX is the closed unit ball of X, namely:

dn(T ) = inf
dim E<n

[
sup

f∈BX

dist (Tf,E)
]
. (2.6)

In the case where X = Y = H, a Hilbert space, we have:

an(T ) = dn(T ) for all n ≥ 1 , (2.7)

and ([39]) the following alternative definition of an(T ):

an(T ) = inf
dim E<n

[
sup dist (Tf, TE)

]
. (2.8)
f∈BH
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In this work, we use, for an operator T : H → H, the following notation:

β−
N (T ) = lim inf

n→∞
[anN (T )]1/n (2.9)

and:

β+
N (T ) = lim sup

n→∞
[anN (T )]1/n . (2.10)

When these two quantities are equal, we write them βN (T ).

3. Pluripotential theory

3.1. Monge–Ampère capacity

Let K be a compact subset of an open subset Ω of CN . The Monge–Ampère capacity of K has been 
defined by Bedford and Taylor ([5]; see also [30, Part II, Chapter 1]) as:

Cap (K) = sup
{∫

K

(ddcu)N ; u ∈ PSH(Ω) and 0 ≤ u ≤ 1 on Ω
}
.

When Ω is bounded and hyperconvex, we have a more convenient formula ([5, Proposition 5.3], [30, 
Proposition 4.6.1]):

Cap (K) =
∫
Ω

(ddcu∗
K)N =

∫
K

(ddcu∗
K)N (3.1)

(the positive measure (ddcu∗
K)N is supported by K; actually by ∂K: see [17, Properties 8.1 (c)]), where 

uK = uK,Ω is the relative extremal function of K, defined, for any subset E ⊆ Ω, as:

uE,Ω = sup{v ∈ PSH(Ω) ; v ≤ 0 and v ≤ −1 on E} , (3.2)

and u∗
E,Ω is its upper semi-continuous regularization:

u∗
E,Ω(z) = lim sup

ζ→z
uE,Ω(ζ) , z ∈ Ω ,

called the regularized relative extremal function of E.

For an open subset ω of Ω, its capacity is defined as:

Cap (ω) = sup{Cap (K) ; K is a compact subset of ω} .

When ω ⊂ Ω is a compact subset of Ω, we have ([5, equation (6.2)], [30, Corollary 4.6.2]):

Cap (ω) =
∫
Ω

(ddcuω)N . (3.3)
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Remark. A. Zeriahi ([56]) pointed out to us the following result.

Proposition 3.1. Let K be a compact subset of Ω. Then:

Cap (K) = Cap (∂K) .

Proof. Of course uK ≤ u∂K since ∂K ⊆ K. Conversely, let v ∈ PSH(Ω) non-positive such that v ≤ −1 on 
∂K. By the maximum principle (see [30, Corollary 2.9.6]), we get that v ≤ −1 on K. Hence v ≤ uK . Taking 
the supremum over all those v, we obtain u∂K ≤ uK , and therefore u∂K = uK .

By (3.1), it follows that:

Cap (K) =
∫
Ω

(ddcu∗
K)N =

∫
Ω

(ddcu∗
∂K)N = Cap (∂K) . � (3.4)

3.2. Regular sets

Let E ⊆ C
N be bounded. Recall that the polynomial convex hull of E is:

Ê = {z ∈ C ; |P (z)| ≤ sup
E

|P | for every polynomial P} .

A point a ∈ Ê is called regular if u∗
E,Ω(a) = −1 for an open set Ω ⊇ Ê (note that we always have 

uE,Ω = uE,Ω = −1 on the interior of E: see [17, Properties 8.1 (c)]). The set E is said to be regular if all 
points of Ê are regular.

The pluricomplex Green function of E, also called the L-extremal function of E, is defined, for z ∈ C
N , 

as:

VE(z) = sup{v(z) ; v ∈ L , v ≤ 0 on E} ,

where L is the Lelong class of all functions v ∈ PSH(CN ) such that, for some constant C > 0:

v(z) ≤ C + log(1 + |z|) for all z ∈ C
N .

A point a ∈ Ê is called L-regular if V ∗
E(a) = 0, where V ∗

E is the upper semicontinuous regularization of VE. 
The set E is L-regular if all points of Ê are L-regular.

By [28, Proposition 2.2] (see also [30, Proposition 5.3.3, and Corollary 5.3.4]), for E bounded and non 
pluripolar, and Ω a bounded open neighborhood of Ê, we have:

m(uE,Ω + 1) ≤ VE ≤ M(uE,Ω + 1) (3.5)

for some positive constants m, M . Hence the regularity of a ∈ Ê is equivalent to its L-regularity.
Recall that E is pluripolar if there exists an open set Ω containing E and v ∈ PSH(Ω) such that 

E ⊆ {v = −∞}. This is equivalent to say that there exists a hyperconvex domain Ω of CN containing E such 
that u∗

E,Ω ≡ 0 (see [30, Corollary 4.7.3 and Theorem 4.7.5]). By Josefson’s theorem ([30, Theorem 4.7.4]), 
E is pluripolar if and only if there exists v ∈ PSH(CN ) such that E ⊆ {v = −∞}. Recall also that E is 
pluripolar if and only if its outer capacity Cap ∗(E) is null ([30, Theorem 4.7.5]).

When Ω is hyperconvex and E is compact, non pluripolar, the regularity of E implies that uE,Ω and 
VE are continuous, on Ω and CN respectively ([30, Proposition 4.5.3 and Corollary 5.1.4]). Conversely, if 
uE,Ω is continuous, for some hyperconvex neighborhood Ω of E, then uE,Ω(z) = −1 for all z ∈ E; hence 
VE(z) = 0 for all z ∈ E, by (3.5); but VE = V ̂ when E is compact ([30, Theorem 5.1.7]), so VE(z) = 0 for 
E
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all z ∈ Ê; by (3.5) again, we obtain that uE,Ω(z) = −1 for all z ∈ Ê; therefore E is regular. In the same 
way, the continuity of VE implies the regularity of E. These results are due to Siciak ([49, Proposition 6.1 
and Proposition 6.2]).

Every closed ball B = B(a, r) of an arbitrary norm ‖ . ‖ on CN is regular since its L-extremal function is:

VB(z) = log+ (
‖z − a‖/r)

([49, p. 179, § 2.6]).

3.3. Zakharyuta–Nivoche formulae

We will need a formula that Zakharyuta, in order to solve a problem raised by Kolmogorov, proved, 
conditionally to a conjecture, called Zakharyuta’s conjecture, on the uniform approximation of the relative 
extremal function uK,Ω by pluricomplex Green functions. This conjecture has been proved by Nivoche ([44, 
Theorem A]).

In order to state Zakharyuta’s formula, we need some additional notations.
Let K be a compact subset of Ω with non-empty interior, and AK the set of restrictions to K of those 

functions that are analytic and bounded by 1, i.e. those functions belonging to the unit ball BH∞(Ω) of the 
space H∞(Ω) of the bounded analytic functions in Ω, considered as a subset of the space C(K) of complex 
functions defined on K, equipped with the sup-norm on K.

Let dn(AK) be the nth-width of AK in C(K), namely:

dn(AK) = inf
L

[
sup

f∈AK

dist (f, L)
]
, (3.6)

where L runs over all k-dimensional subspaces of C(K), with k < n.
Equivalently, dn(AK) is the nth-Kolmogorov number of the natural injection J of H∞(Ω) into C(K)

(recall that K has non-empty interior). For E ⊆ Ω compact or open, it is convenient to set, as in [55]:

τN (E) = 1
(2π)N Cap (E) (3.7)

and:

ΓN (E) = exp
[
−

(
N !

τN (E)

)1/N
]

, (3.8)

i.e.:

ΓN (E) = exp
[
− 2π

(
N !

Cap (E)

)1/N]
. (3.9)

Observe that Cap (K) > 0 since we assumed that K has non-empty interior. Now, we have ([55, Theo-
rem 5.6]; see also [54, Theorem 5] or [53, pages 30–32], for a detailed proof):

Theorem 3.2 (Zakharyuta–Nivoche). Let Ω be a bounded hyperconvex domain and K a regular compact subset 
of Ω with non-empty interior, which is holomorphically convex in Ω (i.e. K = K̃Ω). Then:

− log dn(AK) ∼
(

N !
τN (K)

)1/N

n1/N . (3.10)
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Here K̃Ω is the holomorphic convex hull of K in Ω, that is:

K̃Ω = {z ∈ Ω ; |f(z)| ≤ sup
K

|f | for every f ∈ O(Ω)} ,

where O(Ω) is the set of all functions holomorphic in Ω.
Relying on that theorem, which may be seen as the extension of a result of Erokhin, proved in 1958 (see 

[19]; see also Widom [52] which proved a more general result, with a different proof), to dimension N > 1, 
and as a result on the approximation of functions, we will give an application to the study of approximation 
numbers of a composition operator on H2(Ω) for a bounded symmetric domain of CN .

In Section 4.3.2, we will also use the following result ([55, Proposition 6.1]), which do not need any 
regularity condition on the compact set (because it may be written as a decreasing sequence of regular 
compact sets).

Proposition 3.3 (Zakharyuta). If K is any compact subset of a bounded hyperconvex domain Ω of CN with 
non-empty interior, we have:

lim sup
n→∞

log dn(AK)
n1/N ≤ −

(
N !

τN (K)

)1/N

.

4. The “spectral radius type” formula

We first make a comment on the terminology “spectral radius type” formula.
The usual spectral radius formula tells that, if T : X → X is an operator from a Banach space X into 

itself and σ(T ) its spectrum, we have:

lim
n→∞

‖Tn‖1/n = sup
λ∈σ(T )

|λ| .

So, the nth root of ‖Tn‖ is related to a subset of the complex plane (the spectrum of T ) and to a functional 
of that subset (the greatest modulus of an element of that subset). By the “spectral radius type” formula, 
we understand the equality, for Ω ⊆ C

N and φ : Ω → Ω:

lim
n→∞

(
anN (Cϕ)

)1/n = ΓN [ϕ(Ω)] .

So, the nth root of anN (Cϕ), with the parameter N denoting the dimension, is related to a subset of CN (the 
image of the symbol of Cϕ) and to a functional of that subset (the pluricapacity of that subset). Actually, 
we proved the existence of the limit, and the equality, only for N = 1 and Ω = D, and in the case N > 1
we only have two-sided estimates, with a possibly non-existing limit, and must use lim sup and lim inf. In 
any case, it is this analogy which motivated our terminology.

4.1. Introduction

In [40, Section 6.2], we proved the following result.

Theorem 4.1. Let ϕ : DN → D
N be given by ϕ(z1, . . . , zN ) = (r1z1, . . . , rNzN ) where 0 < rj < 1. Then:

βN (Cϕ) = ΓN

[
ϕ(DN )

]
= ΓN

[
ϕ(DN )

]
.
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The proof was simple, based on result of Błocki [8] on the Monge–Ampère capacity of a cartesian product, 
and on the estimation, when s → ∞, of the number νs of N -tuples α = (α1, . . . , αN ) of non-negative integers 
αj such that 

∑N
j=1 αjσj ≤ s, where the numbers σj > 0 are fixed. The estimation was:

νs ∼
sN

N !σ1 · · ·σN
· (4.1)

As J. F. Burnol pointed out to us, this is a consequence of the following elementary fact. Let λN be the 
Lebesgue measure on RN , and let E be a compact subset of RN such that λN (∂E) = 0. Then:

λN (E) = lim
s→∞

s−N |(sE) ∩ Z
N | .

Then, just take E = {(x1, . . . , xN ) ; xj ≥ 0 and
∑N

j=1 xjσj ≤ 1}.
In any case, this lets us suspect that the formula of Theorem 4.1 holds in much more general cases. This 

is not quite true, as evidenced by our counterexample of [40, Theorem 5.12]. Nevertheless, in good cases, 
this formula holds, as we will see in the next sections.

In remaining of this section, we consider functions ϕ : Ω → Ω such that ϕ(Ω) ⊆ Ω. If ρ is an exhaustion 
function for Ω, there is some R0 < 0 such that ϕ(Ω) ⊆ BΩ(R0), and that implies that Cϕ maps H2(Ω) into 
itself and is a compact operator (see [46, Theorem 8.3], since, with their notations, for r > R0, we have 
T (r) = ∅ and hence δϕ(r) = 0).

4.2. Minoration

Recall that every hyperconvex domain Ω is pseudoconvex. By H. Cartan–Thullen and Oka–Bremermann–
Norguet theorems, being pseudoconvex is equivalent to being a domain of holomorphy, and equivalent to 
being holomorphically convex (meaning that if K is a compact subset in Ω, then its holomorphic hull K̃ is 
also contained in Ω): see [33, Corollaire 7.7]. Now (see [32, Chapter 5, Exercise 11]), a domain of holomorphy 
Ω is said a Runge domain if every holomorphic function in Ω can be approximated uniformly on its compact 
subsets by polynomials, and that is equivalent to say that the polynomial hull and the holomorphic hull of 
every compact subset of Ω agree. By [32, Chapter 5, Exercise 13], every circled domain (in particular every 
bounded symmetric domain) is a Runge domain.

Definition 4.2. A hyperconvex domain Ω is said strongly regular if there exists a continuous psh exhaustion 
function ρ such that all the sub-level sets:

Ωc = {z ∈ Ω ; ρ(z) < c}

(c < 0) have a regular closure.

For example, every bounded symmetric domain Ω is strongly regular since if ‖ . ‖ is the associated norm, 
its sub-level sets Ωc (with ρ(z) = log ‖z‖) are the open balls B(0, ec), and the closed balls are regular, as 
said above.

Theorem 4.3. Let Ω be a strongly regular bounded hyperconvex and Runge domain in CN , and let ϕ : Ω → Ω
be an analytic function such that ϕ(Ω) ⊆ Ω, and which is non-degenerate. Then:

ΓN

[
ϕ(Ω)

]
≤ β−

N (Cϕ) . (4.2)
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Recall that if Ω is a domain in CN , a holomorphic function ϕ : Ω → C
M (M ≤ N) is non-degenerate if 

there exists a ∈ Ω such that ranka ϕ = M . Then ϕ(Ω) has a non-empty interior.
Theorem 4.3 holds in particular when Ω is the ball, the polydisk, or more generally a product of balls.

Proof. Let (rj)j≥1 be an increasing sequence of negative numbers tending to 0. The set Hj = Ωrj is a 

regular compact subset of Ω, with non-void interior (hence non pluripolar). Let Ĥj its polynomial convex 
hull; this compact set is contained in Ω, since Ω being a Runge domain, we have Ĥj = H̃j , and since H̃j ⊆ Ω, 
because Ω is holomorphically convex (being hyperconvex). Moreover Ĥj is regular since VE = VÊ for every 
compact subset of CN ([49, Corollary 4.14]).

Let Kj = ϕ
(
Ĥj

)
and let G be a subspace of H2(Ω) with dimension < nN .

The set Kj is regular because of the following result (see [30, Theorem 5.3.9], [45, top of page 40], [29, 
Theorem 1.3], or [43, Theorem 4], with a detailed proof).

Theorem 4.4 (Pleśniak). Let E be a compact, polynomially convex, regular and non pluripolar, subset of C
N . 

Then if Ω is a hyperconvex domain such that E ⊆ Ω and if ϕ : Ω → C
N is a non-degenerate holomorphic 

function, the set ϕ(E) is regular.

As before, the polynomial convex hull K̂j of Kj is contained in Ω and is also regular. Since ϕ is non-
degenerate, Kj has a non-void interior; hence K̂j also. We can hence use Zakharyuta–Nivoche formula 
(Theorem 3.2) for the compact set K̂j .

By restriction, the subspace G can be viewed as a subspace of C(K̂j). By Zakharyuta–Nivoche formula, 
for 0 < ε < 1, there is nε ≥ 1 such that, for n ≥ nε:

dnN (A
K̂j

) ≥ exp
[
− (1 + ε) (2π)n

(
N !

Cap (K̂j)

)1/N]
·

Hence, there exists f ∈ BH∞ ⊆ BH2 such that, for all g ∈ G:

‖g − f‖C(K̂j) ≥ (1 − ε) exp
[
− (1 + ε) (2π)n

(
N !

Cap (K̂j)

)1/N]
·

Since K̂j = K̃j and, by definition ‖ . ‖C(K̃j) = ‖ . ‖C(Kj), we have:

‖g − f‖C(K̂j) = ‖g − f‖C(Kj) = ‖Cϕ(g) − Cϕ(f)‖C(H̃j) .

Equivalently, since, by definition ‖ . ‖C(H̃j) = ‖ . ‖C(Hj), we have, for all g ∈ G:

‖Cϕ(g) − Cϕ(f)‖C(Hj) ≥ (1 − ε) exp
[
− (1 + ε) (2π)n

(
N !

Cap (K̂j)

)1/N]
·

This implies, thanks to (2.3), that, for all g ∈ G:

‖Cϕ(g) − Cϕ(f)‖H2(Ω) ≥ L−1
rj (1 − ε) exp

[
− (1 + ε) (2π)n

(
N !

Cap (K̂j)

)1/N]
·

Using (2.8), we get, since the subspace G is arbitrary:

anN (Cϕ) ≥ L−1
rj (1 − ε) exp

[
− (1 + ε) (2π)n

(
N !̂

)1/N]
·

Cap (Kj)
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Taking the nth-roots and passing to the limit, we obtain:

β−
N (Cϕ) ≥ exp

[
− (1 + ε) (2π)

(
N !

Cap (K̂j)

)1/N]
,

and then, letting ε go to 0:

β−
N (Cϕ) ≥ exp

[
− (2π)

(
N !

Cap (K̂j)

)1/N]
= ΓN (K̂j) .

Now, the sequence (K̂j)j≥1 is increasing and 
⋃

j≥1 K̂j ⊇ ϕ(Ω); hence, by [5, Theorem 8.2 (8.3)], we have 

Cap (K̂j) −→
j→∞

Cap
(⋃

j≥1 K̂j

)
≥ Cap [ϕ(Ω)], so:

β−
N (Cϕ) ≥ ΓN [ϕ(Ω)] ,

and the proof of Theorem 4.3 is finished. �
4.3. Majorization

For the majorization, we assume different hypotheses on the domain Ω. Nevertheless these assumptions 
agree with that of Theorem 4.3 when Ω is a product of balls.

4.3.1. Preliminaries
Recall that a domain Ω of CN is a Reinhardt domain (resp. complete Reinhardt domain) if z =

(z1, . . . , zN ) ∈ Ω implies that (ζ1z1, . . . , ζNzN ) ∈ Ω for all complex numbers ζ1, . . . , ζN of modulus 1 (resp. 
of modulus ≤ 1). A complete bounded Reinhardt domain is hyperconvex if and only if log jΩ is psh and con-
tinuous in CN \{0}, where jΩ is the Minkowski functional of Ω (see [7, Exercise following Proposition 3.3.3]). 
In general, the Minkowski functional jΩ of a bounded complete Reinhardt domain Ω is usc and log jΩ is psh
if and only if Ω is pseudoconvex ([7, Theorem 1.4.8]). Other conditions for a bounded complete Reinhardt 
domain to being hyperconvex can be found in [34, Theorem 3.10].

For a bounded hyperconvex and complete Reinhardt domain Ω, its pluricomplex Green function with pole 
0 is gΩ(z) = log jΩ(z), where jΩ is the Minkowski functional of Ω ([7, Proposition 3.3.2]), and SΩ(r) = er∂Ω. 
Since ∂Ω is in particular invariant by the pluri-rotations z = (z1, . . . , zN ) �→ (eiθ1z1, . . . , eiθN zN ), with 
θ1, . . . , θN ∈ R, the harmonic measure μ̃Ω at 0 (see the proof of Proposition 2.1) is also invariant by the 
pluri-rotations (note that it is supported by the Shilov boundary of Ω: see [50, very end of the paper]). We 
have, as in the proof of Proposition 2.1, for f ∈ H2(Ω):

sup
0<s<1

∫
∂Ω

|f(sz)|2 dμ̃Ω(z) = ‖f‖2
H2(Ω) < ∞ .

Since μ̃Ω is in particular invariant by the rotations z �→ eiθz, θ ∈ R, there exists, by [9, Theorem 3], a 
function f∗ ∈ L2(∂Ω, ̃μΩ) such that: ∫

∂Ω

|f(sz) − f∗(z)|2 dμ̃Ω(z)−→
s→1

0 .

It follows that the map f ∈ H2(Ω) �→ f∗ ∈ L2(∂Ω, ̃μΩ) is an isometric embedding (in fact, f∗ is the radial 
limit of f : see [21, Lemma 2]). Therefore, we can consider H2(Ω) as a complemented subspace of L2(∂Ω, ̃μΩ), 
and we call P the orthogonal projection of L2(∂Ω, ̃μΩ) onto H2(Ω).
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Every holomorphic function f in a Reinhardt domain Ω containing 0 (in particular if Ω is a complete 
Reinhardt domain) has a power series expansion about 0:

f(z) =
∑
α

bαz
α

which converges normally on compact subsets of Ω ([32, Proposition 2.3.14]). Recall that if z = (z1, . . . , zN )
and α = (α1, . . . , αN ), then zα = zα1

1 · · · zαN

N , |α| = α1 + · · · + αN , and α! = α1! · · ·αN !.
We have:

Proposition 4.5. Let Ω be a bounded hyperconvex and complete Reinhardt domain, and set eα(z) = zα. Then 
the system (eα)α is orthogonal in H2(Ω).

Proof. We use the fact that the level sets S(r) and the Demailly–Monge–Ampère measures μr =(
ddc(gΩ)r

)N are pluri-rotation invariant. For α �= β, we choose θ1, . . . , θN ∈ R such that 1, (θ1/2π), . . . ,
(θN/2π) are rationally independent. Then exp

[
i
(∑N

j=1(αj − βj)θj
)]

�= 1. Hence, as in [25, p. 78], we have, 
making the change of variables z = (eiθ1w1, . . . , eiθNwN ):

∫
S(r)

zαzβ dμr(z) = exp
[
i

( N∑
j=1

(αj − βj)θj
)] ∫

S(r)

wαwβ dμr(w) ,

which implies that: ∫
S(r)

zαzβ dμr(z) = 0 ,

and hence:

(zα | zβ) := lim
r→0

∫
S(r)

zαzβ dμr(z) = 0 . �

For the polydisk, we have ‖eα‖H2(DN ) = 1, and for the ball (see [47, Proposition 1.4.9]):

‖eα‖2
H2(BN ) = (N − 1)!α!

(N − 1 + |α|)! ·

Definition 4.6. We say that Ω is a good complete Reinhardt domain if, for some positive constant CN and 
some positive integer c, we have, for all p ≥ 0:

∑
|α|=p

|zα|2
‖eα‖2

H2(Ω)
≤ CN pcN [jΩ(z)]2p ,

where jΩ is the Minkowski functional of Ω.

Examples.
1. The polydisk DN is a good Reinhardt domain because ‖eα‖H2(DN ) = 1, |zα| ≤ ‖z‖|α|∞ , and the number 

of indices α such that |α| = p is 
(
N−1+p

p

)
≤ CNpN (see [35, p. 498] or [37, pp. 213–214]).

2. The ball BN is a good Reinhardt domain. In fact, observe that:

(N − 1 + p)! = p! (p + 1)(p + 2) · · · (p + N − 1) ≤ p! (p + 1)N−1 ≤ p! (p + 1)N ;
(N − 1)! 1 × 2 × · · · × (N − 1)
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hence:

∑
|α|=p

|zα|2
‖eα‖2

H2(BN )
=

∑
|α|=p

|zα|2 (N − 1 + |α|)!
(N − 1)!α!

≤ (p + 1)N
∑
|α|=p

|α|!
α! |z1|2α1 · · · |zN |2αN

= (p + 1)N (|z1|2 + · · · + |zN |2)p ,

by the multinomial formula, so:

∑
|α|=p

|zα|2
‖eα‖2

H2(BN )
≤ (p + 1)N‖z‖2p

2 ≤ 2NpN‖z‖2p
2 .

3. More generally, if Ω = Bl1 × · · · × Blm , l1 + · · · + lm = N , is a product of balls, we have, writing 
α = (β1, . . . , βm), where each βj is an lj-tuple:

‖eα‖2
H2(Ω) =

∫
Sl1×···×Sl2

|uβ1
1 |2 . . . |uβm

m |2 dσl1(u1) . . . dσlm(um)

=
m∏
j=1

(lj − 1)!βj !
(lj − 1 + |βj |)!

,

and, writing z = (z1, . . . , zm), with zj ∈ Blj :

∑
|α|=p

|zα|2
‖eα‖2

H2(Ω)
≤

∑
p1+···+pm=p

m∏
j=1

(pj + 1)lj‖zj‖2pj

2

≤ Cmpm (p + 1)l1+···+lm [jΩ(z)]2(p1+···+pm) ,

since jΩ(z) = max{‖z1‖2, . . . , ‖zm‖2}. Hence:

∑
|α|=p

|zα|2
‖eα‖2

H2(Ω)
≤ CNp2N [jΩ(z)]2p .

4.3.2. The result

Theorem 4.7. Let Ω be a bounded hyperconvex domain which is a good complete Reinhardt domain in CN , 
and let ϕ : Ω → Ω be an analytic function such that ϕ(Ω) ⊆ Ω. Then, for every compact subset K ⊇ ϕ(Ω)
of Ω with non void interior, we have:

β+
N (Cϕ) ≤ ΓN (K) . (4.3)

In particular, if ϕ is moreover non-degenerate, we have:

β+
N (Cϕ) ≤ ΓN

[
ϕ(Ω)

]
. (4.4)

The last assertion holds because ϕ(Ω) is open if ϕ is non-degenerate.
Theorem 4.7 holds in particular when Ω is the ball, the polydisk, or more generally a product of balls.
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Corollary 4.8. Let Ω be a product of balls in CN , and ϕ : Ω → Ω a non-degenerate analytic map such that 
ϕ(Ω) ⊆ Ω. Then:

ΓN

[
ϕ(Ω)

]
≤ β−

N (Cϕ) ≤ β+
N (Cϕ) ≤ ΓN

[
ϕ(Ω)

]
.

Proof of Theorem 4.7. In the sequel we write ‖ . ‖H2 for ‖ . ‖H2(Ω). We set:

ΛN = lim sup
n→∞

[dn(AK)]n
−1/N

.

Changing n into nN , Proposition 3.3 means that for every ε > 0, there exists, for n large enough, an 
(nN − 1)-dimensional subspace F of C(K) such that, for any g ∈ H∞(Ω), there exists h ∈ F such that:

‖g − h‖C(K) ≤ (1 + ε)nΛn
N ‖g‖∞ . (4.5)

Let us consider:

f(z) =
∑
α

bαz
α ∈ H2(Ω) with ‖f‖H2 ≤ 1 .

By Proposition 4.5, we have:

‖f‖2
H2 =

∑
α

|bα|2‖eα‖2
H2 .

Let l be an integer to be adjusted later, and set:

g(z) =
∑
|α|≤l

bαz
α .

By the Cauchy–Schwarz inequality:

|g(z)|2 ≤
( ∑

|α|≤l

|bα|2‖eα‖2
H2

)( ∑
|α|≤l

|zα|2
‖eα‖2

H2

)
≤

∑
|α|≤l

|zα|2
‖eα‖2

H2
·

Since Ω is a good complete Reinhardt domain and since jΩ(z) < 1 for z ∈ Ω, we have:

|g(z)|2 ≤
l∑

p=0
pcN [jΩ(z)]2p ≤ (l + 1)cN+1 .

It follows from (4.5) that there exists h ∈ F such that:

‖g − h‖C(K) ≤ (1 + ε)nΛn
N (l + 1)(cN+1)/2 .

Since Cϕf(z) − Cϕ g(z) = f
(
ϕ(z)

)
− g

(
ϕ(z)

)
and ϕ(Ω) ⊆ K, we have ‖Cϕf − Cϕg‖∞ ≤ ‖f − g‖C(K); 

therefore:

‖g ◦ ϕ− h ◦ ϕ‖H2 ≤ ‖g ◦ ϕ− h ◦ ϕ‖∞ ≤ ‖g − h‖C(K)

≤ (1 + ε)nΛn
N (l + 1)(cN+1)/2 .

(4.6)

Now, the subspace F̃ formed by functions v ◦ϕ, for v ∈ F , can be viewed as a subspace of L∞(∂Ω, ̃μΩ) ⊆
L2(∂Ω, ̃μΩ) (indeed, since v is continuous, we can write (v ◦ ϕ)∗ = v ◦ ϕ∗, where ϕ∗ denotes the almost 
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everywhere existing radial limits of ϕ(rz), which belong to K). Let finally E = P (F̃ ) ⊆ H2(Ω) where 
P : L2(∂Ω, ̃μΩ) → H2(Ω) is the orthogonal projection. This is a subspace of H2(Ω) with dimension < nN , 
and we have dist (Cϕg, E) ≤ ‖g ◦ ϕ − P (h ◦ ϕ)‖H2 ; hence, by (4.6):

dist (Cϕg,E) ≤ (1 + ε)nΛn
N (l + 1)(cN+1)/2 . (4.7)

Now, the same calculations give that:

|f(z) − g(z)|2 ≤
∑
p>l

pcN [jΩ(z)]2p ;

hence, for some positive constant MN :

|f(z) − g(z)| ≤ MN (l + 1)(cN+1)/2 [jΩ(z)]l

(1 − [jΩ(z)]2)(cN+1)/2 ,

by using the following lemma, whose proof is postponed.

Lemma 4.9. For every non-negative integer m, there exists a positive constant Am such that, for all integers 
l ≥ 0 and all 0 < x < 1, we have:

∑
p≥l

pmxp ≤ Amlm
xl

(1 − x)m+1 .

Since K is a compact subset of Ω, there is a positive number r0 < 1 such that jΩ(z) ≤ r0 for z ∈ K. 
Since Cϕf(z) − Cϕg(z) = f

(
ϕ(z)

)
− g

(
ϕ(z)

)
and ϕ(Ω) ⊆ K, we have ‖Cϕf − Cϕg‖∞ ≤ ‖f − g‖C(K), and 

we get:

‖Cϕf − Cϕg‖H2 ≤ ‖Cϕf − Cϕg‖∞ ≤ MN (l + 1)(cN+1)/2 rl0
(1 − r2

0)(cN+1)/2 · (4.8)

Now, (4.7) and (4.8) give:

dist (Cϕf,E) ≤ (l + 1)(cN+1)/2
(

MN rl0
(1 − r2

0)(cN+1)/2 + (1 + ε)nΛn
N

)
.

It follows, thanks to (2.7), that:

[
anN (Cϕ)

]1/n ≤ [(l + 1)(cN+1)/2]1/n
[

M
1/n
N r

l/n
0

(1 − r2
0)(cN+1)/2n + (1 + ε) ΛN

]
.

Taking now for l the integer part of n logn, and passing to the upper limit as n → ∞, we obtain (since 
l/n → ∞ and (log l)/n → 0):

β+
N (Cϕ) ≤ (1 + ε) ΛN ,

and therefore, since ε > 0 is arbitrary:

β+
N (Cϕ) ≤ ΛN .

That ends the proof, by using Proposition 3.3. �
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Proof of Lemma 4.9. We make the proof by induction on m. We set:

Sm =
∑
p≥l

pmxp

The result is obvious for m = 0, with A0 = 1, since then S0 =
∑

p≥l x
p = xl

1−x · Let us assume that it holds 
till m − 1 and prove it for m. We observe that, since pm − (p − 1)m ≤ mpm−1, we have:

(1 − x)Sm =
∑
p≥l

pmxp −
∑
p≥l

pmxp+1 =
∑
p≥l

pmxp −
∑

p≥l+1

(p− 1)mxp

=
∑

p≥l+1

(pm − (p− 1)m)xp + lmxl ≤
∑

p≥l+1

mpm−1xp + lmxl

≤
∑
p≥l

mpm−1xp + lmxl ≤ mAm−1l
m−1 xl

(1 − x)m + lmxl

≤ (mAm−1 + 1) lm xl

(1 − x)m ,

giving the result, with Am = mAm−1 + 1. �

4.4. Equality

In this section, we give a condition ensuring that, for suitable Ω and ϕ, we have Cap [ϕ(Ω)] = Cap [ϕ(Ω)]. 
In particular, we get from Corollary 4.8 and Proposition 4.11 the existence of βN (Cϕ) and:

βN (Cϕ) = ΓN [ϕ(Ω)]

when Ω is the ball BN , ϕ is defined in a neighborhood of the closed ball BN and ϕ(BN ) ⊆ BN .

Proposition 4.10. Let Ω be a bounded hyperconvex domain and ω a relatively compact open subset of Ω. 
Assume that:

For every a ∈ ∂ω, except on a pluripolar set E ⊆ ∂ω, there exists

z0 ∈ ω such that the open segment (z0, a) is contained in ω.
(4.9)

Then:

Cap (ω) = Cap (ω) .

In particular, if ϕ : Ω → Ω a non-degenerate holomorphic map such that ϕ(Ω) ⊆ Ω and ω = ϕ(Ω) satisfies 
(4.9), we have:

Cap
[
ϕ(Ω)

]
= Cap

[
ϕ(Ω)

]
.

Before proving Proposition 4.10, let us give an example of such a situation.
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Proposition 4.11. Let Ω be a bounded hyperconvex domain with C1 boundary. Let U be an open neighborhood
of Ω and ϕ : U → C

N be a non-degenerate holomorphic function such that ϕ(Ω) ⊆ Ω. Then the condition 
(4.9) is satisfied, with ω = ϕ(Ω).

Proof. We may assume that U is connected, hyperconvex and bounded. Let Bϕ be the set of points z ∈ U

such that the complex Jacobian Jϕ is null. Since Jϕ is holomorphic in Ω, we have log |Jϕ| ∈ PSH(U) and 
hence (see [31, proof of Lemma 10.2]):

Bϕ = {z ∈ U ; Jϕ(z) = 0} = {z ∈ U ; log |Jϕ(z)| = −∞}

is pluripolar. Therefore (see [5, Theorem 6.9]), Cap (Bϕ, U) = 0. It follows (see [5, page 2, line −8]) that 
Cap [ϕ(Bϕ)] := Cap [ϕ(Bϕ), Ω] = 0.

Now, for every a ∈ ∂ω∩ [ϕ(U \Bϕ)], there is a tangent hyperplane Ha to ω, and hence an inward normal 
to ∂ω (note that ∂ω ⊆ ϕ(∂Ω) ⊆ ϕ(U)). It follows that there is z0 ∈ ω such that the open interval (z0, a) is 
contained in ω. �
Proof of Proposition 4.10. Let a ∈ ∂ω and L be a complex line containing (z0, a); we have a ∈ ω ∩ L. 
Assume now that this point a is a fine (“effilé”) point of ω, i.e. that there exists u ∈ PSH(V ), for V a 
neighborhood of a, such that:

lim sup
z→a ,z∈ω

u(z) < u(a) .

By definition, the restriction ũ of u to ω ∩ L is subharmonic and we keep the inequality:

lim sup
z→a ,z∈ω∩L

ũ(z) < ũ(a) = u(a) .

That means that a is a fine point of ω ∩ L. But a ∈ ω ∩ L and ω ∩ L is connected, so this is not possible, 
by [39, Lemma 2.4]. Hence no point of ∂ω \ E is fine.

Let now ωf be the closure of ω for the fine topology (i.e. the coarsest topology on U for which all the 
functions in PSH(U) are continuous; it is known: see [6, comment after Theorem 2.3], that it is the trace 
on U of the fine topology on CN ). It is also known (see [30, Corollary 4.8.10]) that ωf is the set of points 
of ω which are not fine. By the above reasoning, we thus have:

ω \ ωf ⊆ E .

Since Cap (E) = 0, we have:

Cap (ω \ ωf ) = 0 ,

and it follows that:

Cap (ω) = Cap [ωf ∪ (ω \ ωf )] ≤ Cap (ωf ) + Cap (ω \ ωf ) = Cap (ωf ) ,

and hence Cap (ωf ) = Cap (ω).
But, since, by definition, the psh functions are continuous for the fine topology, it is clear that the relative 

extremal functions uω,Ω and uωf ,Ω are equal; hence we have, by [30, Proposition 4.7.2]:
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Cap (ω) =
∫
Ω

(ddcu∗
ω,Ω)N =

∫
Ω

(ddcu∗
ωf ,Ω)N = Cap (ωf ) .

Hence Cap (ω) = Cap (ω). �
4.5. Consequences of the “spectral radius type” formula

Theorem 4.3 has the following consequence.

Proposition 4.12. Let Ω be a regular bounded symmetric domain in CN , and let ϕ : Ω → Ω be a non-
degenerate analytic function inducing a bounded composition operator Cϕ on H2(Ω).

Then, if Cap [ϕ(Ω)] = ∞, we have βN (Cϕ) = 1.
In other words, if, for some constants C, c > 0, we have an(Cϕ) ≤ C e−cn1/N for all n ≥ 1, then 

Cap [ϕ(Ω)] < ∞.

As a corollary, we can give a new proof of [40, Theorem 3.1].

Corollary 4.13. Let τ : D → D be an analytic map such that ‖τ‖∞ = 1 and ψ : DN−1 → D
N−1 such that the 

map ϕ : DN → D
N , defined as:

ϕ(z1, z2, . . . , zN ) =
(
τ(z1), ψ(z2, . . . , zN )

)
,

is non-degenerate. Then βN (Cϕ) = 1.

Proof. Since the map ϕ is non-degenerate, ψ is also non-degenerate. Hence (see [43, Proposition 2]) ψ(DN−1)
is not pluripolar, i.e. CapN−1[ψ(DN−1)] > 0. On the other hand, it follows from [39, Theorem 3.13 and 
Theorem 3.14] that Cap1[τ(D)] = +∞. Then, by [8, Theorem 3], we have:

CapN [ϕ(DN )] = CapN [τ(D) × ψ(DN−1)]

= Cap1[τ(D)] × CapN−1[ψ(DN−1)] = +∞ .

It follows from Proposition 4.12 that βN (Cϕ) = 1. �
Proof of Proposition 4.12. If R : H2(Ω) → H2(Ω) is a finite-rank operator, we set, for t < 0:

(Rtf)(w) = (Rf)(etw) , f ∈ H2(Ω) .

Then the rank of the operator Rt is less or equal to that of R.
Recall that if ‖ . ‖ is the norm whose unit ball is Ω, then the pluricomplex Green function of Ω is 

gΩ(z) = log ‖z‖, and hence the level set S(r) is the sphere S(0, er) = er∂Ω for this norm. Since:∫
S(r)

|f [ϕ(etw)] − (Rf)(etw)|2 dμr(w) =
∫

S(r+t)

|f [ϕ(z)] − (Rf)(z)|2 dμr+t(z) ,

we have, setting ϕt(w) = ϕ(etw):

‖Cϕt
(f) −Rt(f)‖H2 ≤ ‖Cϕ(f) −R(f)‖H2 .

It follows that an(Cϕt
) ≤ an(Cϕ) for every n ≥ 1. Therefore β−

N (Cϕt
) ≤ β−

N (Cϕ).
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By Theorem 4.3, we have:

exp
[
− 2π

(
N !

Cap [ϕt(Ω)]

)1/N
]
≤ β−

N (Cϕt
) .

Since ϕt(Ω) = ϕ(etΩ) increases to ϕ(Ω) as t ↑ 0, we have (see [30, Corollary 4.7.11]):

Cap [ϕ(Ω)] = lim
t→0

Cap [ϕt(Ω)] .

As Cap [ϕ(Ω)] = ∞, we get:

β−
N (Cϕ) ≥ lim sup

t→0
β−
N (Cϕt

) = 1 . �
Remark 1. In [40, Theorem 5.12], we construct a non-degenerate analytic function ϕ : D2 → D

2 such that 
ϕ(D2) ∩ ∂D2 �= ∅ and for which β+

2 (Cϕ) < 1. We hence have Cap [ϕ(D2)] < ∞.

Remark 2. The capacity cannot tend to infinity too fast when the compact set approaches the boundary of 
Ω; in fact, we have the following result, that we state for the ball, but which holds more generally.

Proposition 4.14. For every compact set K of BN , we have, for some constant CN :

Cap (K) ≤ CN

[dist (K,SN )]N ·

Proof. We know that:

Cap (K) =
∫
BN

(ddcu∗
K)N .

Let ρ(z) = |z|2 − 1 and aK := minz∈K [−ρ(z)] = − maxz∈K ρ(z). Then ρ is in PSH and is non-positive. 
Since aK > 0, the function:

v(z) = ρ(z)
aK

is in PSH, non-positive on BN , and v ≤ −1 on K. Hence v ≤ uK ≤ u∗
K .

Since v(w) = 0 for all w ∈ SN and (see [5, Proposition 6.2 (iv)], or [30, Proposition 4.5.2]):

lim
z→w

u∗
K(z) = 0 ,

for all w ∈ SN , the comparison theorem of Bedford and Taylor ([5, Theorem 4.1]; [30, Theorem 3.7.1]) gives, 
since v ≤ u∗

K and v, u∗
K ∈ PSH:∫

BN

(ddcu∗
K)N ≤

∫
BN

(ddcv)N = 1
aNK

∫
BN

(ddcρ)N .

As (ddcρ)N = 4NN ! dλ2N , we get, with CN := 4NN ! λ2N (BN ):

Cap (K) ≤ CN

N
·

aK
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That ends the proof since

aK = min
z∈K

(1 − |z|2) ≥ min
z∈K

(1 − |z|) = dist (K,SN ) . �
We have assumed that the symbol ϕ is non-degenerate. For a degenerate symbol ϕ, we have:

Proposition 4.15. Let Ω be a bounded hyperconvex and good complete Reinhardt domain in CN , and let 
ϕ : Ω → Ω be an analytic function such that ϕ(Ω) ⊆ Ω is pluripolar. Then βN (Cϕ) = 0.

Recall that ϕ(Ω) is pluripolar when ϕ is degenerate (see [43, Proposition 2]); its closure is also pluripolar 
if it satisfies the condition (4.9).

Proof. Let K = ϕ(Ω). By hypothesis, we have Cap (K) = 0. For every ε > 0, let Kε = {z ∈ Ω ; dist (z, K) ≤
ε}. By Theorem 4.7, we have β+

N (Cϕ) ≤ ΓN (Kε). As limε→0 Cap (Kε) = Cap (K) = 0 ([30, Proposi-
tion 4.7.1(iv)]), we get βN (Cϕ) = 0. �
Remark 1. In [40, Section 4], we construct a degenerate symbol ϕ on the bi-disk D2, defined by ϕ(z1, z2) =(
λθ(z1), λθ(z1)

)
, where λθ is a lens map, for which β−

2 (Cϕ) > 0. For this function ϕ(D2) ∩ ∂D2 �= ∅ and 
hence ϕ(D2) is not a compact subset of D2.

Remark 2. In the one dimensional case, for any (non constant) analytic map ϕ : D → D, the parameter 
β(Cϕ) = β1(Cϕ) is determined by its range ϕ(D), as shown by the formula:

β(Cϕ) = e−1/Cap [ϕ(D)]

proved in [39]. This is no longer true in dimension N ≥ 2. In [41], we construct pairs of (degenerate) symbols 
ϕ1, ϕ2 : D2 → D

2, such that ϕ1(D2) = ϕ2(D2) and:
1) Cϕ1 is not bounded, but Cϕ2 is compact, and even β2(Cϕ2) = 0;
2) Cϕ1 is bounded but not compact, so β2(Cϕ1) = 1, and Cϕ2 is compact, with β2(Cϕ2) = 0;
3) Cϕ1 is compact, with 0 < β−

2 (Cϕ1) ≤ β+
2 (Cϕ1) < 1, and Cϕ2 is compact, with β2(Cϕ2) = 0.

4) Cϕ1 is compact, with β2(Cϕ1) = 1, and Cϕ2 is compact, with β2(Cϕ2) = 0.
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