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1. Introduction

Let D be the unit disk in C, H?(D) the corresponding Hardy space, ¢ a non-constant analytic self-map of
D and C,: H?*(D) — H?*(D) the associated composition operator. In [39], we proved a formula connecting
the approximation numbers a,(C,) of C,, and the Green capacity of the image ¢(D) in D, namely, when
[p(D)] C D, we have the so-called “spectral radius type” formula:

B(Cy) = lim [an(Cy)]V"™ = exp (= 1/Cap[2(D)]) , (1.1)

n—oo

where Cap [¢(D)] is the Green capacity of o(D).
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A consequence of that formula was the following non-trivial fact, first proved in [38]:

ol =1 = an(Cy) > de " where g, — 04 . (1.2)

In other terms, as soon as ||¢||sc = 1, we cannot hope better for the numbers a,(C,) than a subexponential
decay, however slowly ¢,, tends to 0.

In [40], we pursued that line of investigation in dimension N > 2, namely on H?(D?), and showed that
in some cases the implication (1.2) still holds ([40, Theorem 3.1]):

Ol =1 = a,(C,)> se "V en where en — 0 1.3
® +

(the substitution of n by n'/V is mandatory as shown by the results of [4]).

We show in this paper that, in general, for non-degenerate symbols, we have similar formulas to (1.1) at
our disposal for the parameters:

Bn(Cy) = liminfla,~ (C,)]Y" and B (C,) = limsupla,~ (C,)]Y/™. (1.4)

n—oo n—o0

These bounds are given in terms of the Monge-Ampere (or Bedford-Taylor) capacity of ¢(DY) in DV, a
notion which is the natural multidimensional extension of the Green capacity when the dimension N is > 2
([40, Theorem 6.4]). We show that we have By (C,) = B4 (C,) for well-behaved symbols.

The Monge-Ampere capacity is defined relative to a domain € in C"V and the natural assumption is that
Q is a hyperconvex domain. For such domains, Hardy spaces H%(Q) can be defined ([46]) and for ¢: Q —
analytic, we can define, formally, a composition operator C,,: H?(Q) — H?(£2). We begin hence this paper
by introducing in Section 2 various notions from the theory of several complex variables. In Section 3 we
recall the definition of the Monge—-Ampeére capacity and the Zakharyuta—Nivoche formulae that allow us
to prove our main estimates: let  be a bounded hyperconvex domain in CV and ¢: Q — Q analytic and

non-degenerate such that ¢(w) C Q; then:

— if Q is moreover a strongly reqular and Runge domain, we have:

(Theorem 4.3);
— if © is moreover a good complete Reinhard domain, we have:

(Theorem 4.7).

In some cases, we have Cap [p(Q)] = Cap [¢(Q2)], so By (Cy) = B (C,). Finally, in Section 4.5, we give some
other consequences on composition operators.
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2. Notations and background
2.1. Complex analysis

Let © be a domain (i.e. a connected open subset) in CV; a function u: Q — R U {—oc} is said plurisub-
harmonic (psh) if it is u.s.c. and if for every complex line L = {a + zw; z € C} (a € Q, w € CV), the
function z — u(a+ zw) is subharmonic in QN L. We denote PSH(2) the set of plurisubharmonic functions
in Q. If f: Q — C is holomorphic, then log |f| and | f|*, a > 0, are psh. Every real-valued convex function is
psh (convex functions are those whose composition with all R-linear isomorphisms are subharmonic, though
plurisubharmonic functions are those whose composition with all C-linear isomorphisms are subharmonic:
see [30, Theorem 2.9.12]).

Let dd® = 2i00, and (dd®)N = dd° A --- A dd® (N times). When u € PSH(Q) N C?(Q), we have:

0%y

‘u)V = 4V N1 —
(dd“u) det <8zj82k

) ddan(2),

where d\on(2) = (i/2)Ndzy Adzy A -+ Adzy A dzy is the usual volume in CV. In general, the current
(dd°u)™ can be defined for all locally bounded u € PSH(£2) and is actually a positive measure on Q ([5]).

Given p1,...,ps € Q, the pluricomplex Green function with poles p1,...,ps and weights ¢1,...,cy >0
is defined as:

9(z) = g(z,p1,...,p5) =sup{v(z); v € PSH(),v <0 and
v(z) <e¢jloglz —pj| +O0(1),Vi=1,...,J}.

In particular, for J =1 and p; = a, ¢; = 1, g(+,a) is the pluricomplex Green function of Q with pole a € Q.
If 0 € Q and a = 0, we denote it by gq and call it the pluricomplex Green function of §2; hence:

9a(2) = g(z,a) = sup{u(z); v e PSH(), u<0and u(z) <loglz—al+O(1)}.

Let Q be an open subset of CV. A continuous function p: 2 — R is an exhaustion function if there exists
a € (—oo,+00] such that p(z) < a for all z € Q, and the set Q. = {z € Q; p(z) < ¢} is relatively compact
in Q for every ¢ < a.

A domain Q in CV is said hyperconver if there exists a continuous psh exhaustion function p:  — (—o0,0)
(see [30, p. 80]). We may of course replace the upper bound 0 by any other real number. Without this upper
bound, 2 is said pseudoconvez.

Let 2 be a hyperconvex domain, with negative continuous psh exhaustion function p and p, , the asso-
ciated Demailly-Monge—Ampeére measures, defined as:

Hp,r = (ddcpr)N - ]lQ\BQ)p(r) (ddcp)N7 (2-1)
for r < 0, where p, = max(p,r) and:
Bq ,(r) ={z€Q; p(z) <r}.

The nonnegative measure fi, . is supported by Sq ,(r) ;== {z € Q; p(z) =r}.
If

[aen < .

Q
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these measures, considered as measures on ), weak-+ converge, as r goes to 0, to a positive measure y = g ,
supported by 99 and with total mass [,(dd°p)"™ ([16, Théoréme 3.1], or [30, Lemma 6.5.10]).

For the pluricomplex Green function g, with pole a, we have (dd°g,)™ = (27)V8,, where 4, is
the Dirac measure at a ([16, Théoreme 4.3]) and g,(a) = —o0, so a € Bqg,(r) for every r <0 and
Lo\Bg.,, (r) (dd°g,)N = 0. Hence the Demailly-Monge-Ampére measure /i, , is equal to (ddc(ga)T)N. By
[50, Lemma 1], we have (1/|r|) (ddc(ga)r)N = UgR,,,. (r),qs the relative extremal function of Bo,,(r)={z ¢
Q5 go(2) <r}in Q (see (3.2) for the definition), and this measure is supported, not only by Sq 4, (7), but
merely by the Shilov boundary of Bq 4, (r) (see Section 2.2.1 for the definition).

Since (dd®g,)N = (2m)V, has mass (2m)Y < oo, these measures weak-* converge, as r goes to 0, to
a positive measure u = g 4, supported by 9Q with mass (27)". Demailly ([16, Définition 5.2]) call the

measure W te.g, the pluriharmonic measure of a. When 2 is balanced (az € 2 for every z € Q and

la| = 1), the support of this pluriharmonic measure is the Shilov boundary of € ([50, very end of the paper]).

A bounded symmetric domain of CN is a bounded open and convex subset Q of CN which is circled
(az € Q for z € Q and |a|] < 1) and such that for every point a € 2, there is an involutive bi-holomorphic
map v: Q — Q such that @ is an isolated fixed point of 4 (equivalently, y(a) = a and +'(a) = —id: see
[51, Proposition 3.1.1]). For this definition, see [13, Definition 16 and Theorem 17], or [14, Definition 5
and Theorem 4]. Note that the convexity is automatic (Hermann Convexity Theorem; see [27, p. 503 and
Corollary 4.10]). E. Cartan showed that every bounded symmetric domain of CV is homogeneous, i.e. the
group I' of automorphisms of 2 acts transitively on Q: for every a,b € 2, there is an automorphism -y
of Q such that y(a) = b (see [51, p. 250]). Conversely, every homogeneous bounded convex domain is
symmetric, since o(z) = —z is a symmetry about 0 (see [51, p. 250] or [26, Remark 2.1.2 (e)]). Moreover,
each automorphism extends continuously to Q (see [22]).

The unit ball By and the polydisk DYV are examples of bounded symmetric domains. Another example
is, for N = pgq, bi-holomorphic to the open unit ball of M(p,q) = L(CY?,CP) for the operator norm (see
[27, Theorem 4.9]). Every product of bounded symmetric domains is still a bounded symmetric domain. In

particular, every product of balls @ =B;, x ---xB; ,l; +---+ 1, = N, is a bounded symmetric domain.

m)

If © is a bounded symmetric domain, its gauge is a norm || .|| on CV whose open unit ball is 2. Hence
every bounded symmetric domain is hyperconvex (take p(z) = ||z|| — 1).

2.2. Hardy spaces on hyperconvex domains

2.2.1. Hardy spaces on bounded symmetric domains

We begin by defining the Hardy space on a bounded symmetric domain, because this is easier.

The Shilov boundary (also called the Bergman—Shilov boundary or the distinguished boundary) 959 of
a bounded domain €2 is the smallest closed set ' C 92 such that sup,cq |f(2)| = sup,cp |f(2)| for every
function f holomorphic in some neighborhood of €2 (see [13, § 4.1]).

When 2 is a bounded symmetric domain, it is also, since € is convex, the Shilov boundary of the algebra
A(Q) of the continuous functions on € which are holomorphic in Q (because every function f € A(f2) can
be approximated by f. with f.(2) = f(gz0 + (1 — €)z), where 2y € Q is given: see [20, pp. 152-154]).

The Shilov boundary of the ball By is equal to its topological boundary, but the Shilov boundary of the
bidisk is sD? = {(z1, 22) € C?; |21| = |22| = 1}, whereas, its usual boundary dD? is (T x D) U (D x T); for
the unit ball By, the Shilov boundary is equal to the usual boundary SV~ ([13, § 4.1]). Another example
of a bounded symmetric domain, in C3, is the set Q = {(z1, 22, 23) € C?; |21|*> + |22|*> < 1, |23] < 1} and
its Shilov boundary is 9sQ = {(21, 22,23); |21]® + |22 = 1, |23] = 1}. For p > ¢, the matrix A is in the
topological boundary of M(p,q) if and only if ||A|| = 1, but A is in the Shilov boundary if and only if
A*A = I,; therefore the two boundaries coincide if and only if ¢ = 1, i.e. 2 = By (see [14, Example 2,
p. 30]).
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Equivalently (see [24, Corollary 9], or [13, Theorem 33], [14, Theorem 10]), ds€2 is the set of the extreme
points of the convex set Q.

The Shilov boundary 0s§2 is invariant by the group I' of automorphisms of © and the subgroup
Iy = {y € T'; v(0) = 0} act transitively on 9sQ (see [22]). A theorem of H. Cartan states that the
elements of Iy are linear transformations of C and commute with the rotations (see [24, Theorem 1] or
[26, Proposition 2.1.8]). It follows that the Shilov boundary of a bounded symmetric domain € coincides
with its topological boundary only for Q = By (see [35, p. 572] or [36, p. 367]); in particular the open unit
ball of CV for the norm || .|,, 1 < p < 0o, is never a bounded symmetric domain, unless p = 2.

The unique I'p-invariant probability measure o on 92 is the normalized surface area (see [22]). Then
the Hardy space H*()) is the space of all complex-valued holomorphic functions f on € such that:

1/2
ey = (s, [ 1560 do©)
052

is finite (see [22] and [23]). It is known that the integrals in this formula are non-decreasing as r increases
to 1, so we can replace the supremum by a limit. The same definition can be given when 2 is a bounded
complete Reinhardt domain (see [1]).

The space H?(f)) is a Hilbert space (see [22, Theorem 5]) and for every z € (), the evaluation map
f € H?(Q) — f(2) is uniformly bounded on compact subsets of Q, by a constant depending only on that
compact set, and on 2 ([22, Lemma 3]).

For every f € H?(Q), there exists a boundary values function f* such that || f. — f* L2059 - 0, where

fr(z) = f(rz) ([9, Theorem 3]), and the map f € H*(Q) — f* € L*(9s1) is an isometric embedding ([22,
Theorem 6]).

2.2.2. Hardy spaces on hyperconvexr domains

For hyperconvex domains, the definition of Hardy spaces is more involved. It was done by E. Poletsky
and M. Stessin ([46, Theorem 6]). Those domains are associated to a continuous negative psh exhaustion
function p on  and the definition of the Hardy spaces uses the Demailly-Monge—-Ampére measures. The
space Hg(Q) is the space of all holomorphic functions f: 2 — C such that:

sup / |f|2 dpip,r < 00

r<0
Sap(Q)

and its norm is defined by:

1 1/2
||f|H;<Q>=§gg(W / |f|2dup,r) .

Sa,p(2)

We can replace the supremum by a limit since the integrals are non-decreasing as r increases to 0 ([16,
Corollaire 1.9]).

The space H>(2) of bounded holomorphic functions in €2 is contained in H;(Q) (see [46], remark before
Lemma 3.4).

These spaces H7 () are Hilbert spaces ([46, Theorem 4.1]), but depends on the exhaustion function p
(even when N = 1: see for instance [48]). Nevertheless, they all coincide, with equivalent norms, for the
functions p for which the measure (dd°p)" is compactly supported ([46, Lemma 3.4]); this is the case when
p(z) = g(z,a) is the pluricomplex Green function with pole a € Q (because then (dd°p)"N = (27)Nd,: see
[16, Théoréme 4.3], or [30, Theorem 6.3.6]).
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When 2 is the ball By and p(z) = log||z|2, then (dd°p)N = C &y and p,, = (27)Vdoy, where doy is the
normalized surface area on the sphere of radius ¢ := e" (see [46, Section 4] or [17, Example 3.3]). When
is the polydisk DV and p(z) = log ||2||e0, then (dd®p)N = (2m)N &y ([18, Corollary 5.4]) and W [p,r is the
Lebesgue measure of the torus rTN (see [17, Example 3.10]). Note that in [17] and [18], the operator d° is
defined as 5~ L (9 — ) instead of i(d — 9), as usually used.

In these two cases, the Hardy spaces are the same as the usual ones (see [2, Remark 5.2.1]). Actually, the
two notions of Hardy spaces for a bounded symmetric domain are the same.

Proposition 2.1. Let Q be a bounded symmetric domain in CV. Then the Hardy space H?(SY) coincides with
the Poletsky—Stessin Hardy space Hgﬂ (), with equality of the norms.

In the sequel, we only consider the exhaustion function p = gq; hence we will write Bq(r), Sq(r) and
H?(Q) instead of Bq,,(r), Sa,,(r) and H2(Q).

Proof. First let us note that if || .|| is the norm whose open unit ball is €, then go(z) = log||z| (see [7,
Proposition 3.3.2]).

Let puq be the measure which is the x-weak limit of the Demailly-Monge-Ampeére measures u, =
(ddc(gQ)T)N. We saw that it is supported by 9sQ. By the remark made in [16, pp. 536-537], since the
automorphisms of {2 continuously extend on 0f), the measure uq is I'-invariant. By unicity, the harmonic
measure fig = (2m) Vg at 0 hence coincides with the normalized area measure on 9s€. We have, for
f+Q — C holomorphic and 0 < s < 1:

SR / £(s2) P dfin(2) = lim e [ 172 dir ().
9sQ Sa(r)

because z +— | f(sz)|? is continuous on Q. Now, since go(z) = log ||z||, we have Sq(r) = e"9Q and (gq),(2) +
t = (ga)r+t(82); hence p,(sA) = pry+(A) for every Borel subset A of 9, where t = log s. It follows that:

/\f(SZ)Izdﬂr(Z): / FO dpanse(C)

Sa (T) Sa (T+t)

By letting r and ¢ going to 0, we get:

ey = Jimy e [ 1FOF diteaa(€) = 11,

Sa (r+t)

hence f € H*(Q) if and only if f € HZ (2), with the same norms. O
We have ([46, Theorem 3.6]):

Proposition 2.2 (Poletsky-Stessin). Let 2 be a hyperconver domain in C. For every z € Q, the evaluation
map f € H?(Q) — f(2) is uniformly bounded on compact subsets of Q, by a constant depending only on
that compact set, and on Q.

Hence H?(Q) has a reproducing kernel, defined by:

fla) = (f,K,), for fe H*Q), (2.2)

and for each r < 0:
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L,:= sup |K,|2<o0. (2.3)
a€Bgq(r)

2.3. Composition operators

A Schur map, associated with the bounded hyperconvex domain €, is a non-constant analytic map of €2
into itself. It is said to be non-degenerate if its Jacobian is not identically null. It is equivalent to say that
the differential ¢'(a): CV — CV is an invertible linear map for at least one point a € . In [4], we used
the terminology truly N -dimensional. Then, by the implicit function theorem, this is equivalent to say that
©(€2) has non-void interior. We say that the Schur map ¢ is a symbol if it defines a bounded composition
operator Cy,: H2(Q) — H?(Q) by Cy,(f) = fo .

Let us recall that although any Schur function generates a bounded composition operator on H?(D), this is
no longer the case on H?(D") as soon as N > 2, as shown for example by the Schur map (21, 22) = (21, 21)-
Indeed (see [3]), if say N = 2, taking f(z) = >_7_, 212077 we see that:

Il = vaF1 while [|Cpfllz = l(n+ 1)zl =n+1.

The same phenomenon occurs on H2(By) ([42]; see also [11], [12], and [15]; see also [46]).
2.4. s-numbers of operators on a Hilbert space

We begin by recalling a few operator-theoretic facts. Let H be a Hilbert space. The approximation
numbers a,(T) = a,, of an operator T: H — H are defined as:

an, = inf ||T —RJ, n=12... (2.4)
rank R<n
The operator T is compact if and only if lim, o a,(T) = 0.
According to a result of Allahverdiev [10, p. 155], a, = s, the n-th singular number of T, i.e. the n-th
eigenvalue of |T'| := vT*T when those eigenvalues are rearranged in non-increasing order.
The n-th width d,,(K) of a subset K of a Banach space Y measures the defect of flatness of K and is by
definition:

1K) = inf [?2}3 s (7.5)|. (25)

where FE runs over all subspaces of Y with dimension < n and where dist (f, E) denotes the distance of f
to E.If T: X — Y is an operator between Banach spaces, the n-th Kolmogorov number d,,(T") of T is the
nth-width in Y of T'(Bx) where By is the closed unit ball of X, namely:

dn(T) = dmllrg<n Lselgax dist (T'f, E)] . (2.6)

In the case where X =Y = H, a Hilbert space, we have:
an(T)=d,(T) foralln>1, (2.7)

and ([39]) the following alternative definition of a,(T):

an(T) = inf sup dist (T'f,TE)]| . (2.8)
dim E<n | feBy
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In this work, we use, for an operator T: H — H, the following notation:

Bx(T) = lim inf[a, (T)]"/" (2.9)
and:
B (T) = lirrln%solip[anw (7)™ (2.10)

When these two quantities are equal, we write them Sy (T).
3. Pluripotential theory
3.1. Monge—Ampére capacity

Let K be a compact subset of an open subset Q of CV. The Monge-Ampére capacity of K has been
defined by Bedford and Taylor ([5]; see also [30, Part II, Chapter 1)) as

Cap (K) = sup { /(ddcu)N; u € PSH(Q)and 0 <u <1on Q} .

When  is bounded and hyperconvex, we have a more convenient formula ([5, Proposition 5.3], [30,
Proposition 4.6.1]):

Cap (K Jddc /(ddC N (3.1)

(the positive measure (dd“uj )" is supported by K; actually by K: see [17, Properties 8.1 (c)]), where
ug = ug,q is the relative extremal function of K, defined, for any subset £/ C (2, as:

ug.o =sup{v € PSH(Q?); v<0and v < —1on E}, (3.2)

and u},  is its upper semi-continuous regularization:

up o(2) = 11121 supug,a(C), z€Q,
—Zz

called the reqularized relative extremal function of E.

For an open subset w of €, its capacity is defined as:

Cap (w) = sup{Cap (K); K is a compact subset of w}.

When @ C Q is a compact subset of 2, we have ([5, equation (6.2)], [30, Corollary 4.6.2]):

Cap (w) = /(ddcuw)N. (3.3)

Q
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Remark. A. Zeriahi ([56]) pointed out to us the following result.
Proposition 3.1. Let K be a compact subset of Q2. Then:
Cap (K) = Cap (0K) .

Proof. Of course ug < ugk since 0K C K. Conversely, let v € PSH(£2) non-positive such that v < —1 on
0K . By the maximum principle (see [30, Corollary 2.9.6]), we get that v < —1 on K. Hence v < ug. Taking
the supremum over all those v, we obtain usgx < ug, and therefore ugx = ug.

By (3.1), it follows that:

Cap (K) = [ (dd°u )N = [ (dd°u}yy )™ = Cap (OK). O (3.4)
=]

3.2. Regular sets
Let E C CV be bounded. Recall that the polynomial convex hull of E is:

E ={z € C; |P(2)| < sup|P| for every polynomial P} .
E

A point a € E is called regular if uf o(a) = —1 for an open set 2 E (note that we always have
ugq = ugo = —1 on the interior of E: see [17, Properties 8.1 (c)]). The set F is said to be regular if all
points of E are regular.

The pluricomplex Green function of E, also called the L-extremal function of E, is defined, for z € CV,
as:

Ve(z) =sup{v(z); ve L, v<O0onE},
where £ is the Lelong class of all functions v € PSH(CY) such that, for some constant C > 0:
v(z) < C +log(1+|z|) forall zeCV.

A point a € E is called L-regular if Vi (a) = 0, where V3 is the upper semicontinuous regularization of V.
The set E is L-regular if all points of E are L-regular.

By [28, Proposition 2.2] (see also [30, Proposition 5.3.3, and Corollary 5.3.4]), for E bounded and non
pluripolar, and € a bounded open neighborhood of E, we have:

m(up,o+1) < Vg < M(uggo +1) (3.5)

for some positive constants m, M. Hence the regularity of a € Eis equivalent to its L-regularity.

Recall that E is pluripolar if there exists an open set €2 containing E and v € PSH(Q) such that
E C {v = —occ}. This is equivalent to say that there exists a hyperconvex domain §2 of C¥ containing E such
that uy, o = 0 (see [30, Corollary 4.7.3 and Theorem 4.7.5]). By Josefson’s theorem ([30, Theorem 4.7.4]),
E is pluripolar if and only if there exists v € PSH(CY) such that E C {v = —oc}. Recall also that E is
pluripolar if and only if its outer capacity Cap *(E) is null ([30, Theorem 4.7.5]).

When €2 is hyperconvex and E is compact, non pluripolar, the regularity of ' implies that ug o and
Vg are continuous, on €2 and C¥ respectively ([30, Proposition 4.5.3 and Corollary 5.1.4]). Conversely, if
ug.o is continuous, for some hyperconvex neighborhood Q of E, then ug n(z) = —1 for all z € E; hence
Ve(z) =0 for all z € E, by (3.5); but Vg = V5 when E is compact ([30, Theorem 5.1.7]), so Vg(z) = 0 for
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all z € E’; by (3.5) again, we obtain that ug o(z) = —1 for all z € E; therefore F is regular. In the same
way, the continuity of Vg implies the regularity of E. These results are due to Siciak ([49, Proposition 6.1
and Proposition 6.2]).

Every closed ball B = B(a,r) of an arbitrary norm || . || on C¥ is regular since its L-extremal function is:
Va(z) = log* (|)2 - al /r)
([49, p. 179, § 2.6]).
8.8. Zakharyuta—Nivoche formulae

We will need a formula that Zakharyuta, in order to solve a problem raised by Kolmogorov, proved,
conditionally to a conjecture, called Zakharyuta’s conjecture, on the uniform approximation of the relative
extremal function ux o by pluricomplex Green functions. This conjecture has been proved by Nivoche ([44,
Theorem Al).

In order to state Zakharyuta’s formula, we need some additional notations.

Let K be a compact subset of €2 with non-empty interior, and Ax the set of restrictions to K of those
functions that are analytic and bounded by 1, i.e. those functions belonging to the unit ball B (q) of the
space H>(Q2) of the bounded analytic functions in €2, considered as a subset of the space C(K) of complex
functions defined on K, equipped with the sup-norm on K.

Let d,,(Ak) be the nth-width of Ax in C(K), namely:

dn(Ag) = inf { sup dist (f, L)} ) (3.6)
L LreAx
where L runs over all k-dimensional subspaces of C(K), with k < n.
Equivalently, d,,(Ak) is the nth-Kolmogorov number of the natural injection J of H*>(Q) into C(K)
(recall that K has non-empty interior). For E C € compact or open, it is convenient to set, as in [55]:

™w(E) = W Cap (E) (3.7)
and:
1/N
I'n(E) =exp [ (TN]\(/.'E)) ] , (3.8)

T (E) = exp {_ o (%&3)) UN] . (3.9)

Observe that Cap (K) > 0 since we assumed that K has non-empty interior. Now, we have ([55, Theo-
rem 5.6]; see also [54, Theorem 5] or [53, pages 30-32], for a detailed proof):

Theorem 3.2 (Zakharyuta—Nivoche). Let Q be a bounded hyperconvexr domain and K a regular compact subset
of Q with non-empty interior, which is holomorphically convex in Q (i.e. K = Kq). Then:

1/N
—logd,(Ak) ~ <%['()> nt/N. (3.10)
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Here I~(Q is the holomorphic convex hull of K in €2, that is:
Ro=1{z€9; |f()] < sup|f| for every f € O©)},
K

where O(Q) is the set of all functions holomorphic in €.

Relying on that theorem, which may be seen as the extension of a result of Erokhin, proved in 1958 (see
[19]; see also Widom [52] which proved a more general result, with a different proof), to dimension N > 1,
and as a result on the approximation of functions, we will give an application to the study of approximation
numbers of a composition operator on H2() for a bounded symmetric domain of CV.

In Section 4.3.2; we will also use the following result ([55, Proposition 6.1]), which do not need any
regularity condition on the compact set (because it may be written as a decreasing sequence of regular
compact sets).

Proposition 3.3 (Zakharyuta). If K is any compact subset of a bounded hyperconvex domain Q of CN with
non-empty interior, we have:

lim sup
n—oo

logdy(Ax) _ _(_N! YN
nl/N - 7~ (K) '

4. The “spectral radius type” formula

We first make a comment on the terminology “spectral radius type” formula.
The usual spectral radius formula tells that, if 7: X — X is an operator from a Banach space X into
itself and o(T) its spectrum, we have:

lim 77" = sup |)|.

So, the nth root of || 77| is related to a subset of the complex plane (the spectrum of T') and to a functional
of that subset (the greatest modulus of an element of that subset). By the “spectral radius type” formula,
we understand the equality, for Q@ € CV and ¢: Q — Q:

lim (a,~(C,)) L

n—oo

=Inp(Q)].

So, the nth root of a,,~ (C,), with the parameter N denoting the dimension, is related to a subset of CV (the
image of the symbol of C,) and to a functional of that subset (the pluricapacity of that subset). Actually,
we proved the existence of the limit, and the equality, only for N = 1 and ? = D, and in the case N > 1
we only have two-sided estimates, with a possibly non-existing limit, and must use limsup and liminf. In
any case, it is this analogy which motivated our terminology.

4.1. Introduction
In [40, Section 6.2], we proved the following result.

Theorem 4.1. Let : DV — DY be given by o(z1,...,2n8) = (r121,...,rNzN) where 0 < r; < 1. Then:

Bn(Cyp) =Tn[pDN)] =T [e(DY)].
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The proof was simple, based on result of Blocki [8] on the Monge-Ampére capacity of a cartesian product,
and on the estimation, when s — 0o, of the number v, of N-tuples & = (ay, ..., ay) of non-negative integers
o such that Z;vzl ajo; < s, where the numbers o; > 0 are fixed. The estimation was:

SN

(4.1)

Vs ™ Nloy---on .
As J. F. Burnol pointed out to us, this is a consequence of the following elementary fact. Let Ay be the
Lebesgue measure on RY, and let E be a compact subset of RY such that Ay (0F) = 0. Then:

MV (E) = lim s~ N|(s BE)nZY|.

§—>00

Then, just take E = {(z1,...,2n); z; > 0 and Zjvzl zjo; <1},
In any case, this lets us suspect that the formula of Theorem 4.1 holds in much more general cases. This

is not quite true, as evidenced by our counterexample of [40, Theorem 5.12]. Nevertheless, in good cases,
this formula holds, as we will see in the next sections.

In remaining of this section, we consider functions ¢: 2 — Q such that ¢(2) C Q. If p is an exhaustion
function for (2, there is some Ry < 0 such that p(Q2) C Bq(Rp), and that implies that C, maps H2(2) into
itself and is a compact operator (see [46, Theorem 8.3], since, with their notations, for » > Ry, we have

T(r) = 0 and hence §,(r) = 0).
4.2. Minoration

Recall that every hyperconvex domain €2 is pseudoconvex. By H. Cartan—Thullen and Oka—Bremermann—
Norguet theorems, being pseudoconvex is equivalent to being a domain of holomorphy, and equivalent to
being holomorphically convex (meaning that if K is a compact subset in 2, then its holomorphic hull K is
also contained in ): see [33, Corollaire 7.7]. Now (see [32, Chapter 5, Exercise 11]), a domain of holomorphy
Q is said a Runge domain if every holomorphic function in € can be approximated uniformly on its compact
subsets by polynomials, and that is equivalent to say that the polynomial hull and the holomorphic hull of
every compact subset of 2 agree. By [32, Chapter 5, Exercise 13], every circled domain (in particular every
bounded symmetric domain) is a Runge domain.

Definition 4.2. A hyperconvex domain 2 is said strongly regular if there exists a continuous psh exhaustion
function p such that all the sub-level sets:

Q.={2€Q; p(z) <c}
(¢ < 0) have a regular closure.
For example, every bounded symmetric domain € is strongly regular since if || .|| is the associated norm,
its sub-level sets Q. (with p(z) = log||z||) are the open balls B(0,e°), and the closed balls are regular, as

said above.

Theorem 4.3. Let Q be a strongly reqular bounded hyperconver and Runge domain in CV, and let p: Q — Q
be an analytic function such that () C Q, and which is non-degenerate. Then:

Iy [p(Q)] < By (Cy). (4.2)
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Recall that if 2 is a domain in C", a holomorphic function : Q — CM (M < N) is non-degenerate if
there exists a € §2 such that rank, ¢ = M. Then ¢(2) has a non-empty interior.

Theorem 4.3 holds in particular when € is the ball, the polydisk, or more generally a product of balls.

Proof. Let (r;),;>1 be an increasing sequence of negative numbers tending to 0. The set H; = Q_TJ is a
regular compact subset of €, with non-void interior (hence non pluripolar). Let .F/f] its polynomial convex
hull; this compact set is contained in €2, since 2 being a Runge domain, we have ]/'J\J = ﬁ;, and since ﬁ; cQ,
because 2 is holomorphically convex (being hyperconvex). Moreover fl\] is regular since Vg = Vj for every
compact subset of CV ([49, Corollary 4.14]).

Let K; = ga(ff\j) and let G be a subspace of H%(Q) with dimension < n®.

The set K is regular because of the following result (see [30, Theorem 5.3.9], [45, top of page 40], [29,
Theorem 1.3], or [43, Theorem 4], with a detailed proof).

Theorem 4.4 (Plesniak). Let E be a compact, polynomially convez, reqular and non pluripolar, subset of C.
Then if Q is a hyperconver domain such that E C Q and if p: Q — CYN is a non-degenerate holomorphic
function, the set p(F) is reqular.

As before, the polynomial convex hull [/(\] of K; is contained in {2 and is also regular. Since ¢ is non-
degenerate, K; has a non-void interior; hence I/(\j also. We can hence use Zakharyuta—Nivoche formula
(Theorem 3.2) for the compact set I/(\]

By restriction, the subspace G can be viewed as a subspace of C(I/(;) By Zakharyuta—Nivoche formula,
for 0 < € < 1, there is n. > 1 such that, for n > n.:

do(Ag) = oxp [ (1o @mn (ﬁ(lﬁ)) UN} .

Hence, there exists f € By C By such that, for all g € G:

lg = Flleg = (1—€)exp [— (1+¢)@m)n (%(}(\j))w] .

Since I/(\j = f(\; and, by definition || . ||C(I7]j) = |- lle(x;), we have:

lg = Fllegie, = 9 = Flleicyy = 1Col9) = Col Dllegir -

Equivalently, since, by definition || . HC(’HV-) = || llea,), we have, for all g € G:
M

1/N
1Cu(9) = ColPlletay = (1— ) exp [— (1+¢)@n)n (%('KA)) } ~

This implies, thanks to (2.3), that, for all g € G:

1/N
1C4(9) = Col Dl 2@y = Ly (1 — &) exp [ (1+4¢)(@2m)n (CaI;N('K/\)> ] .

Using (2.8), we get, since the subspace G is arbitrary:

ann(Cp) > L1 —2)exp [— (1+¢2)(@2m)n <%(!@>w] .
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Taking the nth-roots and passing to the limit, we obtain:

B(C,) > exp [ (1+¢)(2m) <(hljv(’[?j)>w} ,

and then, letting € go to 0:

o~

BN (Co) z exp | - (2m) (%&?)) UN} “Tw ().

Now, the sequence (f/(\j)jzl is increasing and (>, I/(\] 2 »(); hence, by [5, Theorem 8.2 (8.3)], we have

Cap (K}) — Cap (Ujz1 ) 2 Cap [p(2)], so:

B (Cy) > Tn[p(R)],

and the proof of Theorem 4.3 is finished. O
4.3. Majorization

For the majorization, we assume different hypotheses on the domain 2. Nevertheless these assumptions
agree with that of Theorem 4.3 when 2 is a product of balls.

4.8.1. Preliminaries

Recall that a domain Q of CV is a Reinhardt domain (resp. complete Reinhardt domain) if z =
(z1,...,2n) € Q implies that ((121,...,¢ nvzn) € Q for all complex numbers (1, ...,(y of modulus 1 (resp.
of modulus < 1). A complete bounded Reinhardt domain is hyperconvex if and only if log jq is psh and con-
tinuous in CV \ {0}, where jg is the Minkowski functional of Q) (see [7, Exercise following Proposition 3.3.3]).
In general, the Minkowski functional jo of a bounded complete Reinhardt domain 2 is usc and log jq is psh
if and only if Q is pseudoconvex ([7, Theorem 1.4.8]). Other conditions for a bounded complete Reinhardt
domain to being hyperconvex can be found in [34, Theorem 3.10].

For a bounded hyperconvex and complete Reinhardt domain €2, its pluricomplex Green function with pole
0is ga(z) = log ja(z), where jq is the Minkowski functional of © ([7, Proposition 3.3.2]), and Sq(r) = e"0f2.
Since 9Q is in particular invariant by the pluri-rotations z = (21,...,2n) = (e%121,...,e" 2y), with
01,...,0n € R, the harmonic measure fig at 0 (see the proof of Proposition 2.1) is also invariant by the
pluri-rotations (note that it is supported by the Shilov boundary of Q: see [50, very end of the paper]). We
have, as in the proof of Proposition 2.1, for f € H?(Q):

sup / F(52) dfia(2) = || 32 < o0
0<S<18Q

Since Jig is in particular invariant by the rotations z — ez, § € R, there exists, by [9, Theorem 3], a
function f* € L?(9%, fiq) such that:

[1562) = £ @P diia() 0.
o0
It follows that the map f € H?(Q) — f* € L2(0Q, iq) is an isometric embedding (in fact, f* is the radial
limit of f: see [21, Lemma 2]). Therefore, we can consider H?(2) as a complemented subspace of L?(9%, fiq),
and we call P the orthogonal projection of L?(9, fiq) onto H?(12).
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Every holomorphic function f in a Reinhardt domain  containing 0 (in particular if € is a complete
Reinhardt domain) has a power series expansion about 0:

flz)= E baz®

which converges normally on compact subsets of 2 ([32, Proposition 2.3.14]). Recall that if z = (21,...,2n)
and o = (a1,...,an), then 2% = 27" - 23N, la| = a1 + -+ an, and al = a;!-- - an!.
We have:

Proposition 4.5. Let Q2 be a bounded hyperconvex and complete Reinhardt domain, and set ey (z) = z%. Then
the system (eq)a is orthogonal in H?(Q).

Proof. We use the fact that the level sets S(r) and the Demailly-Monge-Ampére measures p, =
(dd“(gQ)T)N are pluri-rotation invariant. For o # 3, we choose 61,...,0n € R such that 1,(6,/27),...,
(0 /27) are rationally independent. Then exp [i( Zjvzl(aj —3j)0;)] # 1. Hence, as in [25, p. 78], we have,

making the change of variables z = (e®1wy, ..., e~V wy):
—_— N —_—
/ 2%28 dp,(2) = exp [i(Z(%‘ - ﬂj)‘%)} / ww? dp, (w),
S(r) =t S(r)

which implies that:

and hence:

(2% ] 27) := lim / 2%2Pdu,(2) =0. O
r—0
S(r)

For the polydisk, we have [[eq|| 2~y = 1, and for the ball (see [47, Proposition 1.4.9]):

leallZe _ (N-Dlal
MH2EN) ™ (N =1+ |af)!

Definition 4.6. We say that 2 is a good complete Reinhardt domain if, for some positive constant C'y and
some positive integer ¢, we have, for all p > 0:

where jq is the Minkowski functional of (2.

Examples.
1. The polydisk D" is a good Reinhardt domain because |leq || g2pyy = 1, |2] < ||z||[‘>%|7 and the number
of indices o such that |af = pis (¥ *pl“’) < Cnp"N (see [35, p. 498] or [37, pp. 213-214]).

2. The ball By is a good Reinhardt domain. In fact, observe that:

(N—-14p)! (p+1H@+2)---(p+N-1)
N—D! P Ix2x-x(N-1)

<pllp+ )N L <pl(p+ 1)V
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hence:

9 -1+ |
_ Z | a| ':'|a!)

llealZrz sy aIIHz»(BN

lee|=p le|=p
N |a|! 20, 20N
<(+1) ZF|21| - |an]
lajJ=p
=+ DYzl + -+ PP,
by the multinomial formula, so:
Eal§ N||12P N, Ni.|2p
el <@+ D)7 l2lly" <277 |l2]l5"
jap | lEr2 (B

3. More generally, if Q = B;, x --- xB; , l; +---+ 1, = N, is a product of balls, we have, writing
a=(B1,...,0m), where each 3; is an I;-tuple:

leallfr2 o) = / [l fulir | doy, () - o, ()
Sll ><-“><Sl2

_ ﬁ (I —1)! B!
S AT
and, writing z = (21,...,2m), with z; € By;:

|Za‘2 21’1
S SR § (ORI

ler|=p ” a||H2(Q p1t-+pm=p j=1

< Crp™ (p+ 1) T [ (2) 21 FFem)

since jo(z) = max{||z1||2; .-, ||zmll2}. Hence:

4.3.2. The result

Theorem 4.7. Let Q be a bounded hyperconvex domain which is a good complete Reinhardt domain in CN,
and let p: Q — Q be an analytic function such that o(Q) C Q. Then, for every compact subset K O ()
of Q with non void interior, we have:

Br(Cy) <Tn(K). (4.3)
In particular, if ¢ is moreover non-degenerate, we have:
B (Cy) < T [p(Q)] - (4.4)

The last assertion holds because ¢(€2) is open if ¢ is non-degenerate.
Theorem 4.7 holds in particular when € is the ball, the polydisk, or more generally a product of balls.
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Corollary 4.8. Let Q be a product of balls in CN, and ¢: Q — Q a non-degenerate analytic map such that
©(Q) C Q. Then:

Tn[p(Q)] < By(Cy) < BR(Co) <Tn[p(Q)] .
Proof of Theorem 4.7. In the sequel we write ||. [|z2 for ||. ||g2(q). We set:

Ay = limsup[d, (A )"

n—oo

Changing n into nV, Proposition 3.3 means that for every £ > 0, there exists, for n large enough, an
(n™ — 1)-dimensional subspace F of C(K) such that, for any g € H*(Q), there exists h € F such that:

lg = hllecx) < (L+2)"AR lglloo - (4.5)
Let us consider:

f(z) = boz® € HX(Q) with [|f|z < 1.

By Proposition 4.5, we have:
1£11Z2 =D 1bal*llealle
«

Let [ be an integer to be adjusted later, and set:

g(z) = Z baz® .

lal<t
By the Cauchy—Schwarz inequality:

o) < (5 1nPllealle ) (3 1oy ) < X g

lal<t jal <l s lleallise

Since € is a good complete Reinhardt domain and since jo(z) < 1 for z € 2, we have:

l

9 < D p N ja()) < L+ 1)

It follows from (4.5) that there exists h € F such that:

g — Rllecry < (1+ )" AR (L + 1) NT0/2,

Since Cy,f(2) — Cyp g(2) = f(0(2)) — g(p(2)) and @(Q) C K, we have [|Cyf — Cypgllos < If — glle(r):
therefore:

lgow—hoolluz <|lgop —hoplle <Ilg—hllecx)

4.6
< (1 +&) A (1+1)eN+D/2 (46)

Now, the subspace F formed by functions vo ¢, for v € F, can be viewed as a subspace of L™ (99, liq) C
L?(09, iq) (indeed, since v is continuous, we can write (v o ¢)* = v o ¢*, where ¢* denotes the almost
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everywhere existing radial limits of ((rz), which belong to K). Let finally E = P(F) C H?(2) where
P: L2(09Q, ig) — H*(Q) is the orthogonal projection. This is a subspace of H2(Q2) with dimension < n®,
and we have dist (Cg, E) < ||go ¢ — P(ho ¢)||g2; hence, by (4.6):

dist (Cpg, E) < (14 )" A (I 4 1)eN+1/2, (4.7)
Now, the same calculations give that:

() = 9(=)1> < YN jal2)]*7;

p>l1

hence, for some positive constant My :

la(2)]!
(1 = [ja(z)]?)eN+D/2?

f(2) = g(2)] < My (1 + 1)eN+D/2

by using the following lemma, whose proof is postponed.

Lemma 4.9. For every non-negative integer m, there exists a positive constant A, such that, for all integers
[>0and all 0 <z < 1, we have:

zt

>yt < Al Gy -

p>l

Since K is a compact subset of €2, there is a positive number 7o < 1 such that jo(z) < ro for z € K.

Since Cyf(2) = Cog(z) = f((2)) — g((2)) and (Q) € K, we have |[|Cof = Cogllse < |If = gllex), and
we get:
i

cN+1)/2
ICof = Cogllu < NCpf = Cpgllo < My (14 1)/ (D GEEN

(4.8)

Now, (4.7) and (4.8) give:

l
MNT()

dist (Cy f, E) < (14 1)V +D/2 (m
0

+(1+ s)”A}i,) .

It follows, thanks to (2.7), that:

Ml/nrl/n

1/n c n
[anN (C<P)} / < [(l + 1)( N+1)/2]1/ |:(1 _ 7,(2]]\;((:]\?+1)/2n + (1 + 6) AN:| :

Taking now for [ the integer part of nlogn, and passing to the upper limit as n — oo, we obtain (since
l/n — oo and (logl)/n — 0):

BR(Cp) < (1+¢€) A,
and therefore, since € > 0 is arbitrary:
BJT/(Csa) <An.

That ends the proof, by using Proposition 3.3. O



1594 D. Li et al. / J. Math. Anal. Appl. 474 (2019) 1576-1600

Proof of Lemma 4.9. We make the proof by induction on m. We set:

S = Z p" P

p>l

The result is obvious for m = 0, with Ag = 1, since then Sy = Zp>l P = % - Let us assume that it holds

till m — 1 and prove it for m. We observe that, since p™ — (p — 1)™ < mp™~!, we have:

(1—2)Sn, = mexp - mexpﬂ = mexp - Z (p—1)"a?

p>l p=>l p>l p>1+1
= > (P"-(@-DmMaP+1"t < D mp™Tra + 1M

p=>l+1 p>1+1

l
< m—1_.p m l< A lm—l €z m l
m xl

< A nHt—
= (m m—1 + ) (1 — Jj)m

giving the result, with A,, =mA,,_1+1. O

4.4. Equality

In this section, we give a condition ensuring that, for suitable  and ¢, we have Cap [¢(2)] = Cap [¢(2)].
In particular, we get from Corollary 4.8 and Proposition 4.11 the existence of fx(C,) and:

Bn(Cy) = Tnlp(2)]
when € is the ball By, ¢ is defined in a neighborhood of the closed ball By and o(By) C By.

Proposition 4.10. Let ) be a bounded hyperconver domain and w a relatively compact open subset of 2.
Assume that:

For every a € 0w, except on a pluripolar set B2 C Ow, there exists

2o € w such that the open segment (z0,a) is contained in w.
Then:

Cap (w) = Cap (w) .

In particular, if p: Q — Q a non-degenerate holomorphic map such that p(2) C Q and w = () satisfies
(4.9), we have:

Cap [p()] = Cap [¢(Q)] .

Before proving Proposition 4.10, let us give an example of such a situation.
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Proposition 4.11. Let Q be a bounded hyperconvex domain with C* boundary. Let U be an open neighborhood
of Q and p: U — CV be a non-degenerate holomorphic function such that o(Q2) C Q. Then the condition
(4.9) is satisfied, with w = ().

Proof. We may assume that U is connected, hyperconvex and bounded. Let B, be the set of points z € U
such that the complex Jacobian J, is null. Since J,, is holomorphic in €2, we have log|J,| € PSH(U) and
hence (see [31, proof of Lemma 10.2]):

B,={2€U; Jy(2) =0} ={z € U; log|J,(z)| = —o0}

is pluripolar. Therefore (see [5, Theorem 6.9]), Cap (B,,U) = 0. It follows (see [5, page 2, line —8]) that
Cap [p(By)] := Cap [¢(By), Q] = 0.

Now, for every a € 9N [p(U \ By,)], there is a tangent hyperplane H, to @, and hence an inward normal
to 0w (note that 0w C p(9N) C p(U)). It follows that there is zg € w such that the open interval (2o, a) is
contained in w. O

Proof of Proposition 4.10. Let a € dw and L be a complex line containing (zg,a); we have a € wN L.
Assume now that this point a is a fine (“effilé”) point of w, i.e. that there exists u € PSH(V), for V a
neighborhood of a, such that:

limsup u(z) < u(a).

z—a ,zEw

By definition, the restriction u of u to w N L is subharmonic and we keep the inequality:

limsup u(z) < u(a) = u(a).
z—a ,z€EwNL

That means that a is a fine point of wN L. But @ € wN L and w N L is connected, so this is not possible,
by [39, Lemma 2.4]. Hence no point of dw \ E is fine.

Let now w’ be the closure of w for the fine topology (i.e. the coarsest topology on U for which all the
functions in PSH(U) are continuous; it is known: see [6, comment after Theorem 2.3], that it is the trace
on U of the fine topology on CV). It is also known (see [30, Corollary 4.8.10]) that wf is the set of points
of @w which are not fine. By the above reasoning, we thus have:

T\w/ CE.
Since Cap (E) = 0, we have:
Cap (@ \w') =0,
and it follows that:
Cap (@) = Cap [’ U @\ w’)] < Cap () + Cap (@ \ w’) = Cap (w7)
and hence Cap (w/) = Cap ().

But, since, by definition, the psh functions are continuous for the fine topology, it is clear that the relative
extremal functions u, o and u,s o are equal; hence we have, by [30, Proposition 4.7.2]:



1596 D. Li et al. / J. Math. Anal. Appl. 474 (2019) 1576—-1600

Cap () = / (ddu?, ) = / (ddeuts )" = Cap ().

Q Q

Hence Cap (w) = Cap (w). O
4.5. Consequences of the “spectral radius type” formula
Theorem 4.3 has the following consequence.

Proposition 4.12. Let Q be a regular bounded symmetric domain in CV, and let ¢: Q — Q be a non-
degenerate analytic function inducing a bounded composition operator C, on H?().

Then, if Cap [p(Q)] = oo, we have fn(C,) = 1.

In other words, if, for some constants C,c > 0, we have a,(Cy) < Ce—en'’" for all n > 1, then
Cap [p(©2)] < oo.

As a corollary, we can give a new proof of [40, Theorem 3.1].

Corollary 4.13. Let 7: D — D be an analytic map such that ||7||co = 1 and v: DN=1 — DN=1 such that the
map p: DN — DV, defined as:

@(Zla 22y ZN) = (7(21)71/)(2% cee ZN)) )
is non-degenerate. Then Bn(Cy,) = 1.

Proof. Since the map ¢ is non-degenerate, v is also non-degenerate. Hence (see [43, Proposition 2]) (DM 1)
is not pluripolar, i.e. Capy_;[¢(D¥~=1)] > 0. On the other hand, it follows from [39, Theorem 3.13 and
Theorem 3.14] that Cap;[7(D)] = +oco. Then, by [8, Theorem 3], we have:

Capy[p(D™)] = Capy[r(D) x $(DY )]
= Cap,[7(D)] x Capy_;[(DV )] = +o00.

It follows from Proposition 4.12 that Sn(Cy) =1. O
Proof of Proposition 4.12. If R: H?(Q) — H?(Q) is a finite-rank operator, we set, for ¢ < 0:
(Ref)(w) = (Rf)(e'w),  feHQ).

Then the rank of the operator R; is less or equal to that of R.
Recall that if ||.| is the norm whose unit ball is €, then the pluricomplex Green function of € is
ga(z) = log ||z||, and hence the level set S(r) is the sphere S(0,e") = "0 for this norm. Since:

[ lew)l - @R diw) = [ 1fle)] - RO i),
S(r) S(r+t)

we have, setting ¢y (w) = p(etw):

[Co. (f) = Re(f)ll 1> < NCo () = R(S)l 1> -

It follows that a,,(C,,) < a,(Cy) for every n > 1. Therefore By (Cy,) < By (Cy).
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By Theorem 4.3, we have:

L S
o [‘2”<m> ] = e

Since ¢¢(Q) = ¢(e'Q) increases to p(Q) as ¢t 10, we have (see [30, Corollary 4.7.11]):
Cap [p(©)] = lim Cap [:(2)].
As Cap [p(Q)] = oo, we get:

Bn(Cyp) > limsup By (Cy,) =1. O
t—0

Remark 1. In [40, Theorem 5.12], we construct a non-degenerate analytic function p: D? — D? such that
©(D2) N OD? # () and for which B3 (Cy,) < 1. We hence have Cap [¢(D?)] < oo

Remark 2. The capacity cannot tend to infinity too fast when the compact set approaches the boundary of
Q; in fact, we have the following result, that we state for the ball, but which holds more generally.

Proposition 4.14. For every compact set K of By, we have, for some constant Cy :

Cn

Cap (K) < st (5, Sm)I¥

Proof. We know that:

Cap (K) = / (dduf )N .

By
Let p(2) = |2]? — 1 and ax = min,ex[—p(z)] = —max,cx p(2). Then p is in PSH and is non-positive.
Since ax > 0, the function:
_ r(2)
aK

is in PSH, non-positive on By, and v < —1 on K. Hence v < ug < uj.
Since v(w) = 0 for all w € Sy and (see [5, Proposition 6.2 (iv)], or [30, Proposition 4.5.2]):

for all w € Sy, the comparison theorem of Bedford and Taylor ([5, Theorem 4.1]; [30, Theorem 3.7.1]) gives,
since v < uj; and v, uj, € PSH:

/ (ddeule)™ / ()Y = = / (ddep)

452e
Bn Bn By

As (ddp)N = 4N NldXon, we get, with Oy := 4V N! Aoy (By):

C
Cap(K) < —]]\\,/
ax
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That ends the proof since
= min(1 — |z|?) > min(1 — |2z|) = dist (K,Sy) .
axc = min(1 — |2[?) > min(1 - |2)) = dist (K, Sx) . O
We have assumed that the symbol ¢ is non-degenerate. For a degenerate symbol ¢, we have:

Proposition 4.15. Let Q be a bounded hyperconvexr and good complete Reinhardt domain in CV, and let
©: Q= Q be an analytic function such that () C Q is pluripolar. Then Bn(Cy) = 0.

Recall that ¢(€) is pluripolar when ¢ is degenerate (see [43, Proposition 2]); its closure is also pluripolar
if it satisfies the condition (4.9).
Proof. Let K = (). By hypothesis, we have Cap (K) = 0. For every ¢ > 0, let K. = {z € Q; dist (2, K) <
e}. By Theorem 4.7, we have B} (C,) < I'y(K.). As lim._,oCap(K.) = Cap(K) = 0 ([30, Proposi-
tion 4.7.1(iv)]), we get n(Cy,) =0. O

Remark 1. In [40, Section 4], we construct a degenerate symbol ¢ on the bi-disk D?, defined by ¢(z1, 22) =

(/\g(zl),)\g(zl)), where \g is a lens map, for which 5 (Cy,) > 0. For this function p(D?) N ID? # () and
hence p(ID?) is not a compact subset of D?.

Remark 2. In the one dimensional case, for any (non constant) analytic map ¢: D — D, the parameter
B(Cy,) = B1(Cy,) is determined by its range (D), as shown by the formula:

B(C,) = e~ 1/Cap [»(D)]

proved in [39]. This is no longer true in dimension N > 2. In [41], we construct pairs of (degenerate) symbols
©1,p2: D? — D2, such that ¢1(D?) = py(D?) and:

1) C,, is not bounded, but C,, is compact, and even $2(Cy,) = 0;

2) C,, is bounded but not compact, so 32(Cy,) = 1, and C,, is compact, with 82(C,,) = 0;

3) Cy, is compact, with 0 < 35 (Cy,) < B3 (Cy,) < 1, and C, is compact, with 82(Cy,) = 0.
4) Cy, is compact, with $2(Cy,) =1, and C,,, is compact, with 52(Cy,) = 0.
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