30th International Colloquium on Group Theoretical Methods in Physics | |
Relativistic resonance and decay phenomena | |
Bui, Hai V.^1 | |
Department of Physics, University of Texas at Austin, Austin | |
TX | |
78712, United States^1 | |
关键词: Exact relations; Exponential time; Hardy space; Plane wave; Relativistic regime; Semi-group; Time evolutions; Wigner energy; | |
Others : https://iopscience.iop.org/article/10.1088/1742-6596/597/1/012020/pdf DOI : 10.1088/1742-6596/597/1/012020 |
|
来源: IOP | |
【 摘 要 】
The exact relation τ =Γ between the width Γ of a resonance and the lifetime τ for the decay of this resonance could not be obtained in standard quantum theory based on the Hilbert space or Schwartz space axiom in non-relativistic physics as well as in the relativistic regime. In order to obtain the exact relation, one has to modify the Hilbert space axiom or the Schwartz space axiom and choose new boundary conditions based on the Hardy space axioms in which the space of the states and the space of the observables are described by two different Hardy spaces. As consequences of the new Hardy space axioms, one obtains, instead of the symmetric time evolution for the states and the observables, asymmetrical time evolutions for the states and observables which are described by two semi-groups. A relativistic resonance obeying the exponential time evolution can be described by a relativistic Gamow vector, which is defined as superposition of the exact out-plane wave states with a Breit-Wigner energy distribution of the width Γ.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
Relativistic resonance and decay phenomena | 877KB | download |