期刊论文详细信息
JOURNAL OF APPROXIMATION THEORY 卷:252
An extremal composition operator on the Hardy space of the bidisk with small approximation numbers
Article
Li, Daniel1,2  Queffelec, Herve3,4  Rodriguez-Piazza, Luis5,6 
[1] Univ Artois, Fac Jean Perrin, Lab Math Lens LML UR 2462, Rue Jean Souvraz,SP 18, F-62300 Lens, France
[2] Univ Artois, Fac Jean Perrin, Federat CNRS Nord Pas de Calais FR 2956, Rue Jean Souvraz,SP 18, F-62300 Lens, France
[3] Univ Lille Nord France, Lab Paul Painleve UMR CNRS 8524, USTL, F-59655 Villeneuve Dascq, France
[4] Univ Lille Nord France, Federat CNRS Nord Pas de Calais FR 2956, F-59655 Villeneuve Dascq, France
[5] Univ Seville, Dept Anal Matemat, Fac Matemat, Calle Tarfia S-N, Sevila 41012, Spain
[6] Univ Seville, IMUS, Calle Tarfia S-N, Sevila 41012, Spain
关键词: Approximation numbers;    Bidisk;    Composition operator;    Cusp map;    Distinguished boundary;    Hardy space;   
DOI  :  10.1016/j.jat.2019.105363
来源: Elsevier
PDF
【 摘 要 】

We construct an analytic self-map Phi of the bidisk D-2 whose image touches the distinguished boundary, but whose approximation numbers of the associated composition operator on H-2(D-2) are small in the sense that lim sup(n ->infinity)[a(n2)(C-Phi)](1/n) < 1. (C) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jat_2019_105363.pdf 325KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次