期刊论文详细信息
JOURNAL OF APPROXIMATION THEORY | 卷:252 |
An extremal composition operator on the Hardy space of the bidisk with small approximation numbers | |
Article | |
Li, Daniel1,2  Queffelec, Herve3,4  Rodriguez-Piazza, Luis5,6  | |
[1] Univ Artois, Fac Jean Perrin, Lab Math Lens LML UR 2462, Rue Jean Souvraz,SP 18, F-62300 Lens, France | |
[2] Univ Artois, Fac Jean Perrin, Federat CNRS Nord Pas de Calais FR 2956, Rue Jean Souvraz,SP 18, F-62300 Lens, France | |
[3] Univ Lille Nord France, Lab Paul Painleve UMR CNRS 8524, USTL, F-59655 Villeneuve Dascq, France | |
[4] Univ Lille Nord France, Federat CNRS Nord Pas de Calais FR 2956, F-59655 Villeneuve Dascq, France | |
[5] Univ Seville, Dept Anal Matemat, Fac Matemat, Calle Tarfia S-N, Sevila 41012, Spain | |
[6] Univ Seville, IMUS, Calle Tarfia S-N, Sevila 41012, Spain | |
关键词: Approximation numbers; Bidisk; Composition operator; Cusp map; Distinguished boundary; Hardy space; | |
DOI : 10.1016/j.jat.2019.105363 | |
来源: Elsevier | |
【 摘 要 】
We construct an analytic self-map Phi of the bidisk D-2 whose image touches the distinguished boundary, but whose approximation numbers of the associated composition operator on H-2(D-2) are small in the sense that lim sup(n ->infinity)[a(n2)(C-Phi)](1/n) < 1. (C) 2020 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jat_2019_105363.pdf | 325KB | download |