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Abstract

We construct an analytic self-map Φ of the bidisk D2 whose image touches the distinguished
boundary, but whose approximation numbers of the associated composition operator on H2(D2) are
small in the sense that lim supn→∞[an2 (CΦ )]1/n < 1.
c⃝ 2020 Elsevier Inc. All rights reserved.
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1. Introduction

Let us recall that the Hardy space of the polydisk DN is the space:

H 2(DN ) =

{
f : DN

→ C ; f (z) =

∑
α∈NN

aαzα and ∥ f ∥
2
2 :=

∑
α∈NN

|aα|
2 < ∞

}
.
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If Φ : DN
→ DN is an analytic map, the associated composition operator CΦ (which is not

always bounded on H 2(DN ) for N ≥ 2) is defined by:

CΦ( f ) = f ◦ Φ .

For N = 1, composition operators CΦ : H 2(D) → H 2(D) on the Hardy space of the unit disk
are always bounded, and the decay of their approximation numbers an(CΦ) cannot be arbitrarily
fast; actually they cannot supersede a geometric speed ([13]; see also [7, Theorem 3.1]): there
exists a positive constant c such that:

an(CΦ) ≳ e−cn , n = 1, 2, . . .

It is easy to see that this speed occurs when ∥Φ∥∞ < 1, and we proved in [7, Theorem 3.4]
that a geometrical speed only takes place in this case; in other words:

∥Φ∥∞ = 1 ⇐⇒ lim
n→∞

[an(CΦ)]1/n
= 1 . (1.1)

This leads to the introduction, for an operator T between Banach spaces, of the parameters:

β−(T ) = lim inf
n→∞

[an(T )]1/n and β+(T ) = lim sup
n→∞

[an(T )]1/n , (1.2)

where an(T ) is the nth approximation number of T . When [an(T )]1/n actually has a limit,
i.e. when β−(T ) = β+(T ), we write it β(T ).

With this notation, what is proved in [7, Theorem 3.4] is that:

β(CΦ) = 1 if and only if ∥Φ∥∞ = 1 . (1.3)

In other words:

β(CΦ) = 1 if and only if Φ(D) ∩ ∂D ̸= ∅ . (1.4)

Later, in [9], we gave, for Φ : D → D, when ∥Φ∥∞ < 1, a formula for this parameter in
terms of the Green capacity of Φ(D), which allowed us to recover (1.1).

For N ≥ 2, the parameters β−(CΦ) and β+(CΦ) are not the good ones, and we introduce,
for any operator T between Banach spaces, the parameters:

β−

N (T ) = lim inf
n→∞

[anN (T )]1/n and β+

N (T ) = lim sup
n→∞

[anN (T )]1/n , (1.5)

and:

βN (T ) = lim
n→∞

[anN (T )]1/n (1.6)

when the limit exists. It is shown in [1] (see also [12] and [11]) that β±

N (CΦ) are the suitable
parameters for the composition operators on H 2(DN ).

It is clear that 0 ≤ β−(T ) ≤ β+

N (T ) ≤ 1, and it is interesting to know when the extreme
cases β±

N (T ) = 0 or β±

N (T ) = 1 occur. For example:

β−

N (T ) > 0 ⇐⇒ anN (T ) ≳ e−τn , with τ > 0

β−

N (T ) = 1 ⇐⇒ anN (T ) ≳ e−nεn , with εn → 0 .

It is proved in [1], for any N ≥ 1, that β−

N (CΦ) > 0, as soon as Φ is non degenerate (i.e. the
Jacobian JΦ is not identically 0) and the operator CΦ is bounded on H 2(DN ). For an expression
of β±

N (CΦ) in terms of “capacity”, only partial results are known so far ([12] and [11]) and the
application to a result like (1.1) fails in general.
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In [12, Theorem 5.12], we gave an example of a holomorphic self-map Φ : D2
→ D2,

continuous on the closure D2, such that ∥Φ∥∞ = 1, that is:

Φ(T2) ∩ ∂D2
̸= ∅ , (1.7)

and yet:

β+

2 (CΦ) < 1 , (1.8)

in contrast with the one-dimensional case ([7, Theorem 3.4]).
However, in the multidimensional case N ≥ 2, several notions of boundary are available;

in particular that of the Shilov boundary. Though the Shilov boundary of the ball is its usual
boundary, that of the polydisk is its distinguished boundary:

∂eDN
= {z = (z j ) ; |z j | = 1 for all j = 1, . . . , N } = TN

(indeed, the distinguished maximum principle tells that, for f analytic in DN and continuous
on DN , it holds maxz∈DN | f (z)| = maxz∈∂eDN | f (z)|). We have:

∂eDN ⊊ ∂DN . (1.9)

The aim of this paper is to improve on ([12, Theorem 5.12]) and (1.7), in building an analytic
self-map Φ : D2

→ D2, continuous on D2, non-degenerate and such that:

Φ(T2) ∩ ∂eD2
̸= ∅ but β+

2 (CΦ) < 1 . (1.10)

2. Background and notation

Let D be the open unit disk, H 2(DN ) the Hardy space of the polydisk DN , and Φ : DN
→ DN

an analytic map. When N = 1, it is well-known (see [4] or [14]) that Φ induces a composition
operator CΦ : H 2(D) → H 2(D) by the formula:

CΦ( f ) = f ◦ Φ ,

and the connection between the “symbol” Φ and the properties of the operator CΦ , in particular
its compactness, can be further studied (see [4] or [14]). When N > 1, CΦ is not bounded in
general (see [4]).

Let T be the unit circle, and m the normalized Haar measure on TN . A positive Borel
measure µ on DN is called a Carleson measure (for the space H 2(DN )) if the canonical map
J : H 2(DN ) → L2(µ) is bounded. When Φ : DN

→ DN is analytic and induces a bounded
composition operator on H 2(DN ), the pullback measure mΦ = Φ∗(m), defined, for any test
function u, by:∫

DN
u(w) dmΦ(w) =

∫
TN

u[Φ∗(ξ )] dm(ξ ) ,

is a Carleson measure. Here Φ∗ is the radial limit function, defined for m-almost every ξ ∈ TN ,
by Φ∗(ξ ) = limr→1− Φ(rξ ).

For ξ ∈ T = ∂D and h > 0, the Carleson window S(ξ, h) is defined as:

S(ξ, h) = {z ∈ D ; |z − ξ | ≤ h} . (2.1)

In this paper, to save notation, we will work in the case N = 2.
If f ∈ Hol (D2), D k

j f denotes the kth derivative of f with respect to the j th variable
( j = 1, 2).
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We denote by A(D) the disk algebra, i.e. the space of functions holomorphic in D and
continuous on D. We similarly define the bidisk algebra A(D2).

The reproducing kernel Ka of H 2(D2) is, with a = (a1, a2) and z = (z1, z2):

Ka(z) =
1

(1 − a1z1)(1 − a2z2)
· (2.2)

As a consequence:

| f (a)| = |⟨ f, Ka⟩| ≤
∥ f ∥2√

(1 − |a1|
2)(1 − |a2|

2)
· (2.3)

In particular, the functions in the unit ball of H 2(D2) are uniformly bounded on compact subsets
of D2.

Let H1 and H2 be Hilbert spaces, and T : H1 → H2 an operator. The nth approximation
number an(T ) of T , n = 1, 2, . . ., is defined (see [2]) as the distance (for the operator-norm)
of T to operators of rank < n:

an(T ) = inf
rank R<n

∥T − R∥ . (2.4)

The approximation numbers have the ideal property:

an(AT B) ≤ ∥A∥ an(T ) ∥B∥ .

The nth Gelfand number cn(T ) of T is defined by:

cn(T ) = inf
codim E<n

∥T|E∥ . (2.5)

As an easy consequence of the Schmidt decomposition, we have for any compact operator
between Hilbert spaces:

cn(T ) = an(T ) . (2.6)

If T, T1, T2 : H → H ′ are operators between Hilbert spaces H and H ′, we write T = T1⊕T2
if T = T1 + T2 and:

∥T x∥
2

= ∥T1x∥
2
+ ∥T2x∥

2 , for all x ∈ H .

The subadditivity of approximation numbers is then expressed by:

a j+k(T1 ⊕ T2) ≤ a j (T1) + ak(T2) . (2.7)

We denote by N = {0, 1, 2, . . .} the set of non-negative integers, and by [x] the integral part
of the real number x .

We write X ≲ Y to indicate that X ≤ c Y for some constant c > 0, and X ≈ Y to indicate
that X ≲ Y and Y ≲ X .

The paper is organized as follows. In Section 3, we recall with some detail the definition and
main properties of a so-called cusp map χ ∈ A(D), to be of essential use in our counterexample.
In Section 4, we prove several lemmas which constitute the core or the proof. In Section 5, we
state and prove our main theorem.

3. The cusp map

The cusp map χ : D → D is analytic in D and extends continuously on D. The boundary of
its image is formed by three circular arcs of respective centers 1

2 , 1 +
i
2 , 1 −

i
2 , and of radius

1
2 (see Fig. 1). However, the parametrization t ↦→ χ (ei t ) involves logarithms.
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Fig. 1. Cusp map domain.

It was often used by the authors ([6,8]) as an extremal example.
We first recall the definition of χ .
Let D+

= {z ∈ D ; Re z > 0} be the right half-disk. Let now H be the upper half-plane,
and T : D → H defined by:

T (u) = i
1 + u
1 − u

, with T −1(s) =
s − i
s + i

·

Taking the square root of T , we map D onto the first quadrant defined by Q1 = {z ∈ C ; Re z >

0}; we go back to the half-disk {z ∈ D ; Im z < 0} by T −1. Finally, make a rotation by i to
go onto D+. We get:

χ0(z) =

( z − i
i z − 1

)1/2
− i

−i
( z − i

i z − 1

)1/2
+ 1

·

One has χ0(1) = 0, χ0(−1) = 1, χ0(i) = −i , and χ0(−i) = i . The half-circle {z ∈ T ; Re z ≥

0} is mapped by χ0 onto the segment [−i, i] and the segment [−1, 1] onto the segment [0, 1].
Set now, successively:

χ1(z) = log χ0(z) , χ2(z) = −
2
π

χ1(z) + 1 , χ3(z) =
1

χ2(z)
(3.1)

and finally:

χ (z) = 1 − χ3(z) . (3.2)

We now summarize the properties of the cusp map χ in the following proposition.

Proposition 3.1. The cusp map satisfies:

(1) 1 − |χ (z)| ≲
1

log(2/|1 − z|)
;

(2) |1 − χ (z)| ≤ K (1 − |χ (z)|) for all z ∈ D, where K is a positive constant;
(3) χ (D) is the intersection of the open disk D

( 1
2 , 1

2

)
with the exterior of the two open disks

D
(
1 +

i
2 , 1

2

)
and D

(
1 −

i
2 , 1

2

)
;

(4) χ (1) = 1, χ (z) = χ (z) and |χ (z) − 1| ≤ 1 for all z ∈ D;
(5) for 0 < |t | ≤ π/4, we have 1 − Re χ (ei t ) ≈ 1/(log 1/|t |);
(6) χ (D) ⊆ {z = x + iy ; 0 ≤ x ≤ 1 and |y| ≤ 2(1 − x)2

}.
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Proof. Items (1) to (5) are proved in [8, Lemma 4.2]. To prove (6), write χ (z) = (1 − h) + iy.
Since χ (z) = χ (z), we can assume y ≥ 0. Since χ (D) ∩ D

(
1 +

i
2 , 1

2

)
= ∅, we have⏐⏐χ (z) −

(
1 +

i
2

)⏐⏐ ≥
1
2 ; hence:

h2
+

(
y −

1
2

)2
=

⏐⏐⏐⏐χ (z) −

(
1 +

i
2

)⏐⏐⏐⏐2

≥
1
4

,

so that y ≤ y2
+ h2. But y ≤ 1/2, since χ (z) ∈ D

( 1
2 , 1

2

)
; therefore y2

≤ y/2, so we get
y ≤ 2h2. □

4. Preliminary lemmas

In this section, we collect some lemmas, which will reveal essential in the proof of our
counterexample.

We consider the map ϕ = ϕθ , 0 < θ < 1, defined, for z ∈ D \ {1}, by:

ϕ (z) = exp
(
−(1 − z)−θ

)
. (4.1)

We observe, since Re (1 − z) ≥ 0 for z ∈ D, that:

|ϕ (z)| ≤ exp
(
−δ |1 − z|−θ

)
, (4.2)

where δ = cos πθ/2 > 0. Moreover, (4.2) shows that ϕ ∈ A(D), since:

lim
z→1,z∈D

ϕ (z) = 0 =: ϕ (1) .

Our first lemma will allow us to define our symbol Φ.

Lemma 4.1. One can adjust 0 < c < 1 so as to get:

|χ (z)| + 2 c |ϕ ◦ χ (z)| < 1 for all z ∈ D . (4.3)

Hence, if we set, for any g ∈ A(D) with ∥g∥∞ ≤ 1:

Φ(z1, z2) =
(
χ (z1), χ(z1) + c (ϕ ◦ χ )(z1) g(z2)

)
, (4.4)

we have Φ(D2) ⊆ D2.

Remark. The factor 2 in (4.3) is needed in order to get the following inequalities, to be used
later, for z ∈ D and w = χ (z) + c (ϕ ◦ χ )(z) u, with |u| ≤ 1:

|w| ≤
1 + |χ (z)|

2
, (4.5)

or, equivalently:

1 − |w| ≥
1 − |χ (z)|

2
· (4.6)

Indeed:

|w| ≤ |χ (z)| + c |ϕ ◦ χ (z)| ≤ |χ (z)| +
1 − |χ (z)|

2
=

1 + |χ (z)|
2

·

Proof of Lemma 4.1. Set X = |1 − χ (z)|, so that, with K the constant of Proposition 3.1,
(2):

|χ (z)| ≤ 1 −
|1 − χ (z)|

K
= 1 −

X
K

· (4.7)



D. Li, H. Queffélec and L. Rodríguez-Piazza / Journal of Approximation Theory 252 (2020) 105363 7

For z ∈ D and X close enough to zero, say X < η, we have 2 exp(−δX−θ ) < X
K . If we adjust

0 < c < 1 so as to have c <
η

2K , it follows from (4.2) and (4.7) that, for X < η:

|χ (z)| + 2 c |ϕ ◦ χ (z)| ≤ 1 −
X
K

+ 2 exp(−δX−θ ) < 1 .

However, for X ≥ η, (4.7) says that |χ (z)| ≤ 1 −
η

K , so:

|χ (z)| + 2 c |ϕ ◦ χ (z)| ≤ 1 −
η

K
+ 2 c < 1 ,

as well and this ends the proof of Lemma 4.1. □

Our second lemma estimates some integrals and ensures that Φ induces a compact compo-
sition operator on H 2(D2).

Lemma 4.2. (1) For 0 < h ≤ 1, the following estimate holds:

I0(h) :=

∫
|χ (ei t )−1|≤h

1
(1 − |χ (ei t )|)2 dt ≲ e−τ/h , (4.8)

(2) For g ∈ A(D) with 0 < ∥g∥∞ ≤ 1, if we set:

I (h) :=

∫
|χ (ei t1 )−1|≤h

dt1 dt2
(1 − |χ (ei t1 )|)(1 − |χ (ei t1 ) + c (ϕ ◦ χ )(ei t1 ) g(ei t2 )|)

,

we have:

I (h) ≲ e−τ/h .

Consequently, the composition operator CΦ defined in (4.4) is bounded from H 2(D2) to H 2(D2)
and is Hilbert–Schmidt, and hence compact.

Proof. (1) By Proposition 3.1, (5), there exist two constants c1, c2 such that:
c1

log 1/|t |
≤ |χ (ei t ) − 1| ≤

c2

log 1/|t |
, |t | ≤ π ;

hence:

I0(h) ≲
∫

|t |≤e−c1/h
[log(1/|t |)]2 dt = 2

∫
∞

c1/h
x2 e−x dx ≲ h−2e−c1/h .

(2) Using (4.6), we have, thanks to (4.8):

I (h) ≤

∫
|χ (ei t1 )−1|≤h

2
(1 − |χ (ei t1 )|)2 dt1 dt2 ≲ e−τ/h .

In particular, I (1) < ∞, showing that CΦ is Hilbert–Schmidt and hence bounded and
compact. □

For the rest of the paper, we fix a number σ in (0, 1), that for convenience we take as:

σ =
7
8

, (4.9)

a positive integer j0 such that:

2 σ j0 ≤ 1/8 (4.10)

(i.e. j0 ≥ 21), and we set:

a j = 1 − σ j (4.11)
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and:

ρ j =
σ j

4
=

1
4

(1 − a j ) . (4.12)

We also define, for n ≥ 1 and θ being the parameter used in (4.1):

Nn =

[
log 2n

θ log 1/σ

]
+ 1 >

log 2n
log 1/σ

· (4.13)

The next lemma gives a cutting off for χ (D).

Lemma 4.3. For every n ≥ 1, the image χ (D) of the cusp map, deprived of the closed
Euclidean disk D(0, 1−σ j0/K ) and of χ (D)∩S(1, 1/n), can be covered by the open Euclidean
disks D(a j , ρ j ), with j0 ≤ j ≤ Nn .

Proof. Let z ∈ D such that |χ (z)| > 1 − σ j0/K and |χ (z) − 1| > 1/n. We write
χ (z) = x + iy =: 1 − h + iy.

Let j with a j ≤ x < a j+1, i.e. σ j+1 < h ≤ σ j . We have j ≥ j0, since h < σ j0 .
Now, since 0 ≤ x − a j < a j+1 − a j = σ j+1

− σ j , that y2
≤ 4h4 (Proposition 3.1, (6)), and

h ≤ σ j , we have:

|χ (z) − a j |
2 < (σ j

− σ j+1)2
+ y2

≤ (1 − σ )2σ 2 j
+ 4 σ 4 j

;

hence:

|χ (z) − a j | < σ j (1 − σ ) + 2 σ 2 j
= σ j (1 − σ + 2 σ j ) .

Subsequently, since 1 − σ = 1/8, j ≥ j0, and 2 σ j0 ≤ 1/8:

|χ (z) − a j | < σ j (1 − σ + 2 σ j0 ) ≤
σ j

4
= ρ j ,

showing that χ (z) ∈ D(a j , ρ j ).
Moreover, we have j ≤ Nn . Indeed, if j > Nn , we would have:

|χ (z) − 1| ≤ |χ (z) − a j | + (1 − a j ) ≤ ρ j + σ j
=

5
4

σ j
≤

5
4

σ Nn+1
≤ 2 σ Nn ≤ 1/n ,

contradicting the fact that χ (z) /∈ S(1, 1/n). □

Our last lemma gives estimates on derivatives for the functions belonging to H 2(D2).

Lemma 4.4. (1) Let f ∈ H 2(D2), k a non-negative integer, β ∈ D, and let hk(z) =

(D k
2 f )(z, z). Then:

|hk(β)| ≤
k! 2k+1

(1 − |β|)k+1 ∥ f ∥2 .

(2) Assume moreover that h(l)
k (a) = 0 for some a ∈ D and for 0 ≤ l < n. Then, for

0 < ρ < 1 and |b − a| ≤
ρ

2 (1 − |a|), it holds:

|hk(b)| ≤ ρn k! 4k+1

(1 − |a|)k+1 ∥ f ∥2 .

Proof. (1) The Cauchy inequalities give for 0 < s < 1 − |β| and α ∈ N2:

|Dα f (β, β)| ≤
α!

s|α|
sup

|w1−β|=s,|w2−β|=s
| f (w1, w2)| .
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The choice s =
1−|β|

2 gives 1 − |w j | ≥
1−|β|

2 for |w j − β| = s, j = 1, 2; hence, thanks to the
estimate (2.3):

| f (w1, w2)| ≤
∥ f ∥2

√
(1 − |w1|)(1 − |w2|)

≤
2

1 − |β|
∥ f ∥2 ·

Specializing to α = (0, k) now gives the result.
(2) We may assume ∥ f ∥2 ≤ 1. Consider the function defined, for w ∈ D, by:

Hk(w) = hk

(
a + w

1 − |a|

2

)
.

It is a bounded and holomorphic function in D.
For w ∈ D, let β = a +w

1−|a|

2 , which satisfies 1 −|β| ≥
1−|a|

2 . The first part of the lemma
gives:

|Hk(w)| = |hk(β)| ≤
k! 4k+1

(1 − |a|)k+1 ·

Now, H (l)
k (0) = h(l)

k (a) = 0 for 0 ≤ l < n; hence the Schwarz lemma says that Hk satisfies
|Hk(w)| ≤ |w|

n
∥Hk∥∞ for all w ∈ D. Take w =

2(b−a)
1−|a|

, which satisfies |w| ≤ ρ, to get:

|hk(b)| = |Hk(w)| ≤ |w|
n
∥Hk∥∞ ≤ ρn k! 4k+1

(1 − |a|)k+1 · □

5. The main result

Recall that χ is the cusp map and that ϕ is defined in (4.1). The map g appearing in the
formula below plays an inert role, and is just designed to ensure that Φ is non-degenerate; we
can take, for example g(z2) = z2. This seems to mean that non-degeneracy is not the only
issue in the question of estimating β+

2 (CΦ).
Our example appears as a perturbation of the diagonal map defined by ∆(z1, z2) =(

χ (z1), χ(z1)
)

for which we already know ([10, Theorem 2.4]) that ∆(1, 1) = (1, 1) and
β+

2 (C∆) < 1. This map is degenerate, but the perturbation clearly gives a non-degenerate
one since its Jacobian is JΦ(z1, z2) = c (ϕ ◦ χ )(z1) χ ′(z1) g′(z2).

Theorem 5.1. Let:

Φ(z1, z2) =
(
χ (z1), χ(z1) + c (ϕ ◦ χ )(z1) g(z2)

)
be the function defined in (4.4).

Then:

(1) Φ(D2) ⊆ D2 and CΦ : H 2(D2) → H 2(D2) is compact, and moreover Hilbert–Schmidt;
(2) Φ is non-degenerate, and its components belong to the bidisk algebra;
(3) Φ(T2) ∩ T2

= Φ(T2) ∩ ∂eD2
̸= ∅;

(4) an2 (CΦ) ≲ exp(−τn), for some τ > 0, implying β+

2 (CΦ) < 1.

Proof. That Φ maps D2 to itself is proved in Lemma 4.1 and that the composition operator
CΦ : H 2(D2) → H 2(D2) is Hilbert–Schmidt (and in particular compact), in Lemma 4.2. Item
(2) is due to the presence of g, as explained above. The fact that Φ(T2)∩T2

̸= ∅ is clear since
Φ(1, 1) = (1, 1). It remains to prove (4).

Once more, the proof will be conveniently divided into several steps. We begin by a lemma
which is in fact obvious, but explains well what is going on.
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Lemma 5.2. Let λ = 1 −
σ j0
2K , where σ , K and j0 are as in (4.9), Proposition 3.1, (2), and

(4.10). Let rn = 1 −
1
n , and let µ1, µ2, µ3 the respective restrictions of mΦ to the disk λD2,

the annulus rnD2
\ λD2, and the annulus D2

\ rnD2. We then have:

CΦ = T1 ⊕ T2 ⊕ T3 ,

where T j is the canonical injection of H 2(D2) into L2(µ j ).

This is indeed obvious since:

∥CΦ f ∥
2

=

∫
D2

| f |
2dmΦ ,

and by splitting the integral into three parts.
We now majorize separately the numbers ap(T j ), for j = 1, 2, 3. In the sequel, the positive

constant τ may vary from one formula to another.
Step 1. It holds:

an2 (T1) ≲ e−τn . (5.1)

Proof. Let V = zn
1 H 2(D2) + zn

2 H 2(D2); this is a subspace of H 2(D2) of codimension ≤ n2,
since:

V =
{

f ∈ H 2(D2) ; D j
1 D k

2 f (0, 0) = 0 for 0 ≤ j, k < n
}
.

If f (z) =
∑

max( j,k)≥n a j,k z j
1zk

2 ∈ V and ∥ f ∥2 = 1, one can write:

f (z) = zn
1 q1(z1, z2) + zn

2 q2(z1, z2) ,

with:

q1(z) =

∑
j≥n,k≥0

a j,k z j−n
1 zk

2 and q2(z) =

∑
j<n,k≥n

a j,k z j
1zk−n

2 ,

which satisfy ∥q j∥2 ≤ ∥ f ∥2 = 1, j = 1, 2.
An easy estimate now gives (since max(|z1|

n, |zn
2 |) ≤ λn on λD2):

∥T1 f ∥
2

≤ 2
(∫

λD2

(
|zn

1 |
2
|q1(z1, z2)|2 + |zn

2 |
2
|q2(z1, z2)|2

)
dmΦ

)
≲ λ2n

∫
λD2

(
|q1|

2
+ |q2|

2) dmΦ ≲ λ2n(
∥q1∥

2
2 + ∥q2∥

2
2

)
≲ λ2n ,

since we know by Lemma 4.2 that CΦ is bounded on H 2(D2) and hence that mΦ is a Carleson
measure for H 2(D2). Alternatively, we could majorize |q j (z1, z2)| uniformly on the support of
µ1. We hence obtain:

an2+1(T1) = cn2+1(T1) ≲ e−τn . □ (5.2)

Step 2. It holds:

an2 (T3) ≲ e−τn . (5.3)

Proof. In one variable, we could use the Carleson embedding theorem; but this theorem for
the bidisk and the Hardy space H 2(D2) notably has a more complicated statement ([3]; see
also [5]), and cannot be used efficiently here. Our strategy will be to replace it by a sharp
estimation of a Hilbert–Schmidt norm.
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We set hn = 1 − rn = 1/n.
Clearly, denoting by S2 the Hilbert–Schmidt class:

∥T3∥
2

≤ ∥T3∥
2
S2

=

∫
dµ3(w)

(1 − |w1|
2)(1 − |w2|

2)
≤

∫
dµ3(w)

(1 − |w1|)(1 − |w2|)
·

Now, if w = (w1, w2) =
(
χ (z1), χ(z1) + c (ϕ ◦ χ )(z1) g(z2)

)
belongs to the support of µ3, we

have max(|w1|, |w2|) ≥ rn = 1 − hn , and, recalling (4.5):

|w1| ≥ 2 |w2| − 1 , (5.4)

we have in either case |w1| ≥ 1 − 2hn . By Proposition 3.1, (2), this implies that:

|1 − w1| ≤ 2 K hn .

Lemma 4.2 gives:

∥T3∥
2 ≲

∫
|χ (ei t1 )−1|≤2K hn

dt1 dt2
(1 − |χ (ei t1 )|)(1 − |χ (ei t1 ) + c (ϕ ◦ χ )(ei t1 ) g(ei t2 )|)

= I (2K hn) ≲ e−τ/hn .

But hn = 1/n, so that:

an2 (T3) ≤ ∥T3∥ ≲ e−τn . □ (5.5)

Step 3. It holds:

an2 (T2) ≲ e−τn . (5.6)

This estimate follows from the following key auxiliary lemma. In fact, this lemma will give,
for the Gelfand numbers, cn2 (T2) ≲ e−τn , and we know that they are equal to the approximation
numbers.

Let M : H 2(D2) → Hol(D) be the linear map defined by:

M f (z) = f (z, z) ,

Recall that a j = 1 − σ j and Nn =

[
log 2n

θ log 1/σ

]
+ 1.

Lemma 5.3. Let E be the closed subspace of H 2(D2) defined by:

E =

{
f ∈ H 2(D2) ;

[
M(D k

2 f )
] (l)(a j ) = 0

for 0 ≤ l < n, 0 ≤ k ≤ m j , 1 ≤ j ≤ Nn

}
.

Then, we can adjust the numbers m j so as to guarantee that, for some positive constant τ :

codim E ≲ n2

and, for all f ∈ E with ∥ f ∥2 ≤ 1:

∥T2( f )∥2 ≲ exp(−τn) .

Proof. This is the most delicate part.
Recall that:

hn = 1/n , rn = 1 − hn , λ = 1 −
σ j0

2 K
·
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We need a uniform estimate of | f (w)| for f ∈ E with ∥ f ∥2 ≤ 1 and for:

w = (w1, w2) ∈ supp mΦ ∩ (rnD2
\ λD2) .

This estimate will be given by Lemmas 4.3 and 4.4. Note that we have:

χ (z1) ∈ D \ [S(1, 1/n) ∪ D(0, 2λ − 1)] .

Indeed, if (w1, w2) = Φ(z1, z2) /∈ λD2, we have max(|w1|, |w2|) > λ; so either |w1| > λ ≥

2λ − 1, or |w2| > λ and again |w1| > 2λ − 1 since |w1| ≥ 2 |w2| − 1, by (4.5). Hence
w1 /∈ D(0, 2λ − 1). Moreover, we have |1 − w1| ≥ 1 − |w1| > 1/n, so w1 /∈ S(1, 1/n).

Using Lemma 4.3, select j0 ≤ j ≤ Nn such that |χ (z1) − a j | ≤
1
4 (1 − a j ). Now set:

A =
(
χ (z1), χ(z1)

)
and ∆ =

(
0, (ϕ ◦ χ )(z1) g(z2)

)
.

Our strategy will be the following. We write:

f [Φ(z1, z2)] = f (A + ∆) =

∞∑
k=0

D k
2 f (A)

k!
∆k

=

∞∑
k=0

M(D k
2 f )[χ (z1)]

k!
∆k

=

∞∑
k=0

hk[χ (z1)]
k!

∆k ,

with hk = M(D k
2 f ), and we put:

S j =

m j∑
k=0

hk[χ (z1)]
k!

∆k

and

R j =

∑
k>m j

hk[χ (z1)]
k!

∆k .

We will estimate separately S j and R j .

(a) Estimation of R j .
Recall that j is such that j0 ≤ j ≤ Nn and |χ (z1) − a j | ≤

1
4 (1 − a j ). We saw in the proof

of this Lemma 4.3 that 1 − |χ (z1)| ≤ |1 − χ (z1) ≤
5
4 σ j . Hence:

|∆| ≤ |(ϕ ◦ χ )(z1)| ≤ exp
(

−
δ

|1 − χ (z1)|θ

)
≲ exp(−τ σ− jθ ) .

Now, use Lemma 4.4 and (4.2) to get:

|R j | ≤

∑
k>m j

2k+1

(1 − |χ (z1)|)k+1 |∆|
k ≲

∑
k>m j

2kσ− jk exp(−τk σ− jθ )

≲ 2m j σ− jm j exp(−τm jσ
− jθ ) ≲ exp(−τm jσ

− jθ )

for some absolute constant τ > 0, that is:

|R j | ≲ exp(−τn) (5.7)

if we take:

m j = [n σ jθ ] + 1 . (5.8)
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(b) Estimation of S j .
We saw in the estimation of R j that 1 − |χ (z1)| ≳ σ j . Now, remember that h(l)

k (a j ) = 0 for
l < n, since f ∈ E , we then use Lemma 4.4 to get, when we take the values:

a = a j , 1 − a j = σ j , b = χ (z1) , ρ =
1
2

,

a good upper bound for hk [χ (z1)]
k!

when k ≤ m j , namely:⏐⏐⏐⏐hk[χ (z1)]
k!

⏐⏐⏐⏐ ≲ 4k+1

σ j(k+1) ρn .

We then obtain an estimate of the form:

|S j | ≲

m j∑
k=0

ρn 4k+1

σ j(k+1) ≲ ρn 4m j

σ jm j
= exp

(
−n log 2 + m j log 4 − jm j log

7
8

)
≲ exp(−4τn + B jm j )

with τ =
1
4 log 2 and B ≤ log 4 + log(8/7) ≤ 2; or else, using (5.8):

|S j | ≲ exp(−4τn + B jn σ jθ
+ B j) .

But since σ = 7/8 < 1, the implied exponent, for j0 ≤ j ≤ Nn:

−4τn + B jn σ jθ
+ B j = n(−4τ + B j σ jθ ) + B j ,

is ≤ −2τn + B ′ log n, provided that we choose j0 large enough, namely such that j0
( 7

8

) j0θ
≤

1/4. This implies an inequality of the form:

|S j | ≲ e−2τnnB′

≲ e−τn . (5.9)

Putting the estimates (5.7) and (5.9) on R j and S j together, we obtain, for every f ∈ E
with ∥ f ∥2 ≤ 1:

∥T2 f ∥ ≲ e−τn . (5.10)

It remains to bound from above the codimension of E . Since Nn =
[ log 2n

θ log 1/σ

]
+ 1 with

σ = 7/8 and m j = [n σ jθ ] + 1, we see that:

codim E ≤

n−1∑
l=0

Nn∑
j=1

m j ≤

n−1∑
l=0

Nn∑
j=1

(n σ jθ
+ 1) ≲ n2

∞∑
j=1

σ jθ
+ n log n < q n2 .

Therefore (5.10) can be read as well, remembering the equality of approximation numbers and
Gelfand numbers:

aq n2 (T2) = cq n2 (T2) ≲ e−τn. (5.11)

Putting the estimates (5.2), (5.5), and (5.11) together ends the proof of Lemma 5.3. □

Finally, Lemma 5.2 and (2.7) give:

a3n2 (CΦ) = a3n2 (T1 ⊕ T2 ⊕ T3) ≤ an2 (T1) + an2 (T2) + an2 (T3) ≲ e−τn ,

thereby finishing the proof of Theorem 5.1. □

Remark. Understanding where the difference really lies when we pass to the multidimensional
case is a big challenge: it does not seem to be a matter of regularity of the boundary, and a
similar example probably holds for the Hardy space of the ball.
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