期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:485
Localization of real algebraic hypersurfaces with applications to the enumeration of the classes of relative equilibria of a (5+1)-body problem
Article
Barros, Jean F.1  Leandro, Eduardo S. G.2 
[1] Univ Estadual Feira de Santana, Dept Ciencias Exatas, Av Transnor Destina S-N, BR-44036900 Feira De Santana, BA, Brazil
[2] Univ Fed Pernambuco, Dept Matemat, Av Jornalista Anibal Fernandes S-N, BR-50740560 Recife, PE, Brazil
关键词: Algebraic hypersurfaces;    N-body problem;    Relative equilibria;   
DOI  :  10.1016/j.jmaa.2019.123813
来源: Elsevier
PDF
【 摘 要 】

We extend classical results on the localization of zeros of real univariate polynomials to the localization of zero sets of real multivariate polynomials P, more precisely, of real algebraic hypersurfaces (assuming 0 is a regular value). Through suitable changes of variables, we may verify whether such a hypersurface P-1(0) in R-n intersects or not a given n-dimensional box B-n = Pi(n)(l=1)[a(l), b(l)], and in the affirmative case, to locate with arbitrary precision the set P-1(0) boolean AND B-n Properties of the hypersurface such as being an analytic graph may also be deduced from our results, which include a non-differentiable, non-local version of the implicit function theorem for polynomials. Next, we apply the ideas of the first part to study the bifurcations of a one-parameter family of symmetric classes of relative equilibria of the (5 + 1)-body problem. The exact numbers of classes of relative equilibria are provided, and our technique allows for the localization of all relative equilibria. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2019_123813.pdf 424KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次