期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:459
Polynomial inequalities on certain algebraic hypersurfaces
Article
Bialas-Ciez, Leokadia1  Calvi, Jean-Paul2,3  Kowalska, Agnieszka4 
[1] Jagiellonian Univ, Fac Math & Comp Sci, Lojasiewicza 6, PL-30348 Krakow, Poland
[2] Univ Toulouse III, Inst Math, F-31062 Toulouse 9, France
[3] CNRS, UMR 5219, F-31062 Toulouse 9, France
[4] Pedag Univ, Inst Math, Podchorazych 2, PL-30084 Krakow, Poland
关键词: Markov inequality;    Schur inequality;    Division inequality;    Algebraic hypersurfaces;   
DOI  :  10.1016/j.jmaa.2017.11.010
来源: Elsevier
PDF
【 摘 要 】

We prove that any Markov set in C-N satisfies a Schur type inequality for polynomials and we give a generalization for polynomial matrices. As a consequence, we obtain polynomial inequalities on compact subsets of algebraic hypersurfaces of the form V = {z(N+1)(k), = s(z(1),..., z(N))} subset of CN+1, where s is a non constant polynomial of N variables. We also give a condition equivalent to the Markov inequality on compact subsets of V. (C) 2017 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2017_11_010.pdf 413KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:0次