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Abstract

We prove that any Markov set in C
N satisfies a Schur type inequality for polyno-

mials and we give a generalization for polynomial matrices. As a consequence,

we obtain polynomial inequalities on compact subsets of algebraic hypersurfaces

of the form V = {zkN+1 = s(z1, . . . , zN )} ⊂ C
N+1, where s is a non constant

polynomial of N variables. We also give a condition equivalent to the Markov

inequality on compact subsets of V .

Keywords: Markov inequality, Schur inequality, division inequality, algebraic

hypersurfaces
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1. Introduction

In the constellation of polynomial inequalities, the Markov inequality – which

relates, on a given compact set in C
N , the growth of a polynomial to that of its

derivatives – certainly plays one of the most important roles. Far from being an

isolated result, it has become a classical tool in numerical analysis, especially in

problems involving discretizations (see the construction of admissible meshes in
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[8] for a recent example), it is essentially equivalent to quite a few other useful

inequalities and it also has a deep theoretical significance. For instance, it has

been connected to fundamental concepts of (pluri)potential theory and shown

to be equivalent to the existence of extension operators for C∞ functions (see

[19]). Since polynomials are essential objects on algebraic sets, it is natural to

look for an analogue to the Markov inequality for compact subsets of algebraic

sets.

The first major result in this direction was obtained in [5] where it was

shown that the Markov inequality – in which standard derivation is replaced

by tangential derivation – characterizes smooth algebraic submanifolds in R
N .

For further related works, we refer to [6], [3], [11], [7], [16] and the references

therein.

In this paper, we follow a different path. Our generalization of the Markov

inequality on algebraic hypersurfaces uses ordinary higher derivatives. We are

interested in polynomial inequalities for compact subsets of algebraic hypersur-

faces of the form V = {zkN+1 = s(z1, . . . , zN )}, N ≥ 1, k ∈ {1, 2, . . .} and s is

a non constant polynomial of N variables. Namely, we propose two versions of

the Markov inequality on a compact set E ⊂ V and we prove that one of them is

equivalent to the fact that the natural projection of E onto C
N is a Markov set

(see below). Moreover, a division inequality (also called Schur type estimate)

on the set E is proved under the assumption that its projection π(E) satisfies

the Markov inequality. The properties mentioned above have been the subject

of many works in recent years, e.g. by Baran, Brudnyi, Levenberg, Pleśniak

in view of their many applications to numerical analysis, constructive function

theory and approximation. However, the case of compact subsets of algebraic

hypersurfaces in complex space requires different techniques and seems to be of

independent interest.

To derive our results, we need to prove, see section 3, an explicit division

inequality in the ordinary case which has relevant applications in other topics.

The main motivation for our study was an open problem in [2] where the authors

asked about a generalized Markov property for compact subsets of {x3+y3 = 1}
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and {x4+y4 = 1} (see [2, Open problem 1]). Our approach relies on elementary

arithmetic and algebraic tools that one cannot expect to use in more general

situations. However, our results provide an incentive for looking for similar

results on general algebraic sets. More involved methods are certainly required

to obtain such generalizations, probably with less precise estimates.

We usually denote by P(CN ) (resp. Pd(C
N )) the space of all polynomials

of N complex variables with coefficients in C (resp. of total degree at most

d). Sometimes, however, it is more convenient to write P(z1, . . . , zN ) or P(z),

z = (z1, . . . , zN ) for P(CN ) and likewise for the subspaces of polynomials of

a given degree. We use a standard multinomial notation. In particular, for

α = (α1, . . . , αN ) ∈ N
N , we have |α| = α1 + · · · + αN , zα = zα1

1 . . . zαN

N and

Dα = ∂|α|/(∂zα1
1 . . . ∂zαN

N ). Given v ∈ C
N , the n-th directional derivative of

a holomorphic function f at a along v is

Dn
v (f)(a) = dfn(a)(v, v, . . . , v) =

dn

dtn
f(a+ tv)

∣∣∣∣
t=0

where dnf(a) denotes the complete n-th Frechet derivative of f at a.

We will work with the group Uk of the k-th roots of unity in C. Any generator

of Uk is called a primitive k-th root of unity.

Finally, given a compact set E and a continuous function f on E, as usual,

we set ‖f‖E = max{|f(z)|, z ∈ E}.

2. Basic facts on Markov inequality and companion inequalities

Definition 1 (Markov set and Markov inequality). A compact set E ⊂ C
N is

said to be a Markov set if there exist constants M,m > 0 such that

‖Dαp‖E ≤ M |α|(deg p)m|α|‖p‖E , p ∈ P(CN ), α ∈ N
N . (1)

Such inequality is called a Markov inequality for E.

By iteration, inequality (1) is satisfied for all α once it is satisfied for all α

of length one. The following properties immediately follow from the definition.
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1. A compact set E ⊂ C
N is a Markov set if and only if so is A(E) where

A is any affine automorphism of CN .

2. A finite union of Markov sets is a Markov set.

3. The Cartesian product of two Markov sets Ei in C
Ni , i = 1, 2 is a Markov

set in C
N1+N2 .

4. A Markov set E in C
N is P(CN )-determining (determining for short) that

is, p ∈ P(CN ) and ‖p‖E = 0 implies p = 0. (Otherwise, (1) cannot hold

for a polynomial p of minimal positive degree which vanishes on E.)

Considerable work has been done in the last decades about the problem of find-

ing (geometrical) conditions ensuring that a given compact is a Markov set and

that of finding (near) optimal constants in Markov inequalities for a given com-

pact set. The survey paper [20] and the references therein provide an account of

the current knowledge. For theoretical applications, the main references are [18],

[19]. For connections to (pluri-) potential theory, the reader may for instance

consult [1].

Observe that if E is a P(CN )-determining compact set, the function p →
‖p‖E defines a norm on P(CN ). Since the map p ∈ Pn(C

N ) → Dαp is linear

continuous on (Pn(C
N ), ‖ . . . ‖E), its (operator) norm M(α, n) is well defined

and

‖Dαp‖E ≤ M(α, n)‖p‖E , p ∈ Pn(C
N ).

Thus, to say that a determining compact set E is a Markov set is equivalent to

say that the norm M(α, n) grows polynomially in n, i.e M(α, n) = O(nm), with

m ∈ R
+, for all α of length 1. We will set

M(�, n) = max
|α|=�

M(α, n). (2)

Let E be a P(CN )-determining compact set and q be a non constant poly-

nomial.

The map φ : h ∈ qPn(C
N ) → h/q ∈ Pn(C

N ) is linear, hence continuous

(with the norm ‖ · ‖E) and its operator norm D(E, q, n) is well defined in R
+.
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Taking h = pq so that φ(h) = p, we have

‖p‖E ≤ D(E, q, n)‖pq‖E , p ∈ Pn(C
N ). (3)

Definition 2 (Division set and division inequality). A determining compact

set E in C
N is said to be a division set if for all non zero polynomial q, the

norm D(E, q, n) grows polynomially in n. Equation (3) in which D(E, q, n) is

replaced by any explicit bound is called a division inequality.

The most classical division inequality, which holds for E = [−1, 1], is due to

Schur [23] and states that

‖p‖[−1,1] ≤ (1 + deg p)‖pq‖[−1,1], q(x) = x, p ∈ P(R).

For this reason division inequalities are sometimes called Schur inequalities.

Such kind of estimate has been investigated by e.g. Stein [24] and Goetgheluck

[12], [13], [14]. It is shown in [4] that, in the complex one-dimensional case,

Markov sets and division sets coincide. Let us point out that, of course, one may

define Markov sets and division sets in R
N by restricting the above definitions

to P(RN ). It is readily seen that, for E ⊂ R
N , to be a Markov (resp. division)

set as a subset of RN is equivalent to be a Markov (division) set as a subset of

C
N but the involved constant may (slightly) differ.

In the next section we prove a specific division inequality for compact sets

in C
N that will be used later in the paper.

3. A Polynomial division inequality for Markov compact sets in C
N

We prove that a Markov set E in C
N is a division set and we give a sim-

ple polynomial bound for D(E, q, n) in terms of the constants involved in the

Markov inequality for E.

Theorem 3. Let E be a compact set in C
N satisfying Markov inequality (1) and

q ∈ P(CN ) a non zero polynomial of degree d. There exists a positive constant

C depending only on q and E such that

‖p‖E ≤ C(d+ n)dm‖pq‖E , p ∈ Pn(C
N ) (4)
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An explicit value for C is given in the proof. Of course we may assume

d ≥ 1, the case d = 0 being obvious.

Lemma 4. Let E be a determining compact set in C
N . We have∥∥Dk

vp
∥∥
E
≤ ‖v‖kM(k, n)‖p‖E , p ∈ Pn(C

N ), k ∈ N, v = (v1, . . . , vN ) ∈ C
N

where M(k, n) is defined in (2) and ‖v‖ = |v1|+ · · ·+ |vN |.

In particular, if (1) holds true, for all k ∈ N and v = (v1, . . . , vN ) ∈ C
N we

have ∥∥Dk
vp

∥∥
E
≤ ‖v‖kMk(deg p)mk‖p‖E , p ∈ P(CN ). (5)

Proof. By the multivariate Taylor formula, for p ∈ Pn(C
N ) and a ∈ E, we have

p(a+ h) =
n∑

j=0

n∑
|α|=j

(
j

α

)
hα

j!
Dαp(a), h ∈ C

N .

Taking h = tv and differentiating k times with respect to t at t = 0, we get

Dk
vp(a) =

∑
|α|=k

(
k

α

)
vαDαp(a). (6)

Hence, using the definition of M(k, n),∣∣Dk
vp(a)

∣∣ ≤M(k, n)‖p‖E
∑
|α|=k

(
k

α

)
(|v1|, . . . , |vN |)α

=(|v1|+ · · ·+ |vN |)kM(k, n)‖p‖E

where the last equality uses the multinomial formula. The lemma follows.

Proof of Theorem 3. It is similar in spirit to that of [13, Lemma 3]. Let q̂ be

the homogeneous part of degree d in q. Choose v = (v1, . . . , vN ) ∈ C
N such

that ‖v‖ = 1 and q̂(v) �= 0. We will prove that (4) holds with

C = C(q, E) =
γdMd

|q̂(v)| , γ = 5/2 (7)

where M is the constant from (1) or (5) and the value of γ arises from tech-

nical reasons that we will explain below. To optimize our estimate, we should

therefore choose v on the unit ball which maximizes |q̂(v)|.
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Let p be a polynomial of degree n ≥ 1. Take a point z0 ∈ E with |p(z0)| =
‖p‖E . We define d+ 1 positive numbers ci as

ci = i!
(γMnm)i

Cnmd
, i = 0, . . . , d. (8)

If |q(z0)| ≥ c0 then

‖p‖E = |p(z0)| ≤ |p(z0)q(z0)|
c0

≤ Cnmd‖pq‖E ≤ C(d+ n)md‖pq‖E ,

and inequality (4) is satisfied. We will now deal with the more complicated case

where |q(z0)| < c0. Using (6) and taking into account that Dαq̂ is constant for

|α| = d, we have

Dd
vq(a) =

∑
|α|=d

(
d

α

)
vαDαq(a) =

∑
|α|=d

(
d

α

)
vαDαq̂(a)

=
∑
|α|=d

(
d

α

)
vαDαq̂(0) = d!q̂(v)

for any a ∈ C where the last equality is just a Taylor formula. Hence, since, in

view of (8) and (7), d!|q̂(v)| = cd, we have |Dd
vq(z0)| = cd. Thus if |q(z0)| < c0,

we have, in particular, that |Dvq(z0)| ≥ c1 in the case of d = 1. Hence there

exists l ∈ {1, . . . , d} such that

∣∣Di
vq(z0)

∣∣ < ci for 0 ≤ i ≤ l − 1 while
∣∣Dl

vq(z0)
∣∣ ≥ cl. (9)

The idea of the proof is that ‖p‖E is comparable to |p(z0)Dl
vq(z0)| which, due

to the definition of l, is the dominant term in Dl
v(pq)(z0) and, in view of the

Markov inequality, this derivative can be estimated in terms of ‖pq‖E . The

details are as follows. We start from

‖p‖E = |p(z0)| ≤ 1

cl

∣∣p(z0)Dl
vq(z0)

∣∣ , (10)

which uses the definition of l. By the Leibniz rule, we have

pDl
vq = Dl

v(pq)−
l−1∑
i=0

(
l

i

)
Dl−i

v pDi
vq,
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hence, from (10),

‖p‖E ≤ 1

cl

[∣∣Dl
v(pq)(z0)

∣∣+ l−1∑
i=0

(
l

i

) ∣∣Dl−i
v p(z0)D

i
vq(z0)

∣∣]

≤ 1

cl

[∥∥Dl
v(pq)

∥∥
E
+

l−1∑
i=0

(
l

i

)∥∥Dl−i
v p

∥∥
E

∣∣Di
vq(z0)

∣∣]

and, in view of the definition of l in (9),

‖p‖E ≤ 1

cl

[∥∥Dl
v(pq)

∥∥
E
+

l−1∑
i=0

ci

(
l

i

)∥∥Dl−i
v p

∥∥
E

]
.

We may now use the Markov inequality in the form (5), taking into account

that ‖v‖ = 1, to get

‖p‖E ≤ 1

cl

[
M l(d+ n)lm‖pq‖E +

l−1∑
i=0

ci

(
l

i

)
M l−in(l−i)m‖p‖E

]
.

Inserting the values of the coefficients ci and C (see (8), (7)), we obtain,

‖p‖E ≤ γd−lM
d(d+ n)lmnm(d−l)

l!|q̂(v)| ‖pq‖E + ‖p‖E
l−1∑
i=0

(
l

i

)
i!

l!
γi−l

Now, we bound the first term on the right hand side using l ≥ 1 and n ≤ d+ n

and observe that the sum in the second one are the first l terms in the series

expansion for exp(1/γ)− 1 to finally obtain

‖p‖E ≤ γd−1Md

|q̂(v)| (d+ n)dm‖pq‖E + (exp(1/γ)− 1)‖p‖E .

Hence,

(2− exp(1/γ)) ‖p‖E ≤ γd−1Md

|q̂(v)| (d+ n)dm‖pq‖E .

We obtain

‖p‖E ≤ γdMd

|q̂(v)| (d+ n)dm‖pq‖E ,

provided than 1 ≤ γ(2 − exp(1/γ)). The value γ(2 − exp(1/γ)) equals 1 for

γ ≈ 2.258 and any greater γ works, for instance γ = 5/2.

Applying the inequality to pk rather than p, we obtain the following corollary.
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Corollary 5. Under the assumption of Theorem 3, for all k ∈ N, we have

‖p‖E ≤ C1/k(d+ nk)dm/k‖p |q|1/k‖E , p ∈ Pn(C
N ), n ∈ N,

with the same constant C as in (4).

We will need a slight extension of Theorem 3 to the case of polynomial

vectors.

Let P = (p1, . . . , pl)
T is a column vector whose entries pi are polynomials in

P(CN ) and A = (qij) is a l× l matrix whose entries qij are elements of P(CN ).

The matrix product AP is again a column vector of polynomials. Observe that

detA is itself a polynomial. We will write ‖P‖E = max{‖pi‖E : i = 1, . . . , l}
and ‖A‖E =

∑n
j=1 ‖Colj(A)‖E where Colj(A) denotes the j-th column of A

so that, just as in the ordinary case, we have ‖AP‖E ≤ ‖A‖E‖P‖E .

Corollary 6. Let E ⊂ C
N be a compact set in C

N satisfying Markov inequality

(1) and A be a fixed polynomial matrix as above whose determinant is a non

zero polynomial of degree r. Then there exists a positive constant c depending

only on A and E such that

‖P‖E ≤ c(r + n)rm‖AP‖E , P = (p1, . . . , pl)
T , pi ∈ Pn(C

N ). (11)

Proof. Since detA �≡ 0, we may apply Theorem 3 with q = detA to get,

‖pj‖E ≤ C(r + n)rm‖(detA)pj‖E , j = 1, . . . , l,

with a constant C = C(E, detA) . Hence

‖P‖E ≤ C(r + n)rm‖(detA)P‖E .

Let now B denote the transpose of the comatrix of A; i.e. B is a polynomial

matrix satisfying BA = (detA)I where I is the identity matrix. Replacing

(detA)P by BAP in the above estimate, we obtain

‖P‖E ≤ C(r + n)rm‖BAP‖E ≤ C(r + n)rm‖B‖E‖AP‖E

so that inequality (11) holds with c = C · ‖B‖E which depends only on E and

A.
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4. Algebraic preliminaries on the hypersurfaces {yk = s(z1, . . . , zN)}
⊂ C

N+1

We want to study an extension of the Markov inequality to compact subsets

of an hypersurface of the form

V (f) = {f(z, y) = 0, (z, y) = (z1, . . . , zN , y) ∈ C
N+1}, f(z, y) = yk − s(z)

where k ≥ 1 and s is a non constant polynomial in P(CN ) and we use y instead

of zN+1 to emphasize the particular role played by this variable. A basic but

fundamental observation is that f is invariant under the group Uk (of the k-th

roots of unity in C), that is, f(z, wy) = f(z, y) for any w ∈ Uk. In particular

(z, y) ∈ V =⇒ (z, wy) ∈ V .

We now establish the algebraic tools that will be used for our purpose.

4.1. Arithmetic properties of the polynomial f

Lemma 7. The polynomial f is always square free. It is reducible if and only

if s(z) = r(z)n for some polynomial r ∈ P(CN ) and power n > 1 such that

n divides k.

The first property enables us to use the Nullstellensatz ([9, Theorem 2,

p. 172]): if a polynomial p vanishes on V (f) then f divides p. The second part

is a classical result due to Cappelli a more involved version of which is given in

the following result.

Theorem 8 (Capelli’s Theorem, see [22]). A binomial yn − a is reducible over

a field K (of characteristic 0) if and only if either a = bp, p prime, p|n, b ∈ K

or a = −4b4, 4|n, b ∈ K.

Proof of Lemma 7. For the irreducibility of f , we may use the above theorem

with K = F(z) the field of fractions of P(z), taking into account that the

irreducibility of f as an element of the ring of polynomials in y with coefficients

in F(z) implies its irreducibility as an element of P(z, y) and that s is a power

in F(z) if and only if it is a power in P(z).
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To prove that f is square free, we proceed by contradiction as follows. As-

sume that p2(z, y) divides f(z, y) in P(z, y) with p irreducible. It is readily

seen that the degree of p in y must be positive. Next, take (z0, y0) so that

p(z0, y0) = 0. It follows that y0 is a multiple root of the univariate polynomial

yk − s(z0) which forces s(z0) = 0. We proved that s = 0 on {p(z, y) = 0}, and,
since p is irreducible, p divides s which forces s = 0 since y appears in p but not

in s. We get a contradiction since s is not constant.

Since f is invariant under Uk, the uniqueness of decomposition in irreducible

factors gives that, if w ∈ Uk, for any irreducible divisor p of f we have either

p(z, wy) = p(z, y) or p(z, wy) is another irreducible divisor of f . In fact, it is

not difficult to see that the decomposition of f in irreducible factors is of the

form

f(z, y) = yk − (r(z))n =

n∏
i=1

p(z, ξiy) (12)

where p is an irreducible divisor of f invariant under Um for m · n = k and the

ξi are representative of the n elements of the factor group Uk/Um.

4.2. The ring of polynomials on V

Recall that the ring of polynomials on V = V (f) is

P(V ) =
{
p|V , p ∈ P(z, y)

}
.

We have a very simple algebraic structure for P(V ) as shown by the following

lemma and this is one of two key technical points used in the sequel.

Lemma 9. We have

P(z)⊗ Pk−1(y) 
 P(V ).

Here, as usual, P(z)⊗Pk−1(y) denotes the subspace of P(z, y) formed of all

polynomials of the form
∑k−1

i=0 ci(z)y
i with ci ∈ P(z). A specific isomorphism

Φ : P(z)⊗ Pk−1(y) −→ P(V )
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is merely the restriction to V , that is Φ(p) = p|V while Φ−1 is the unique linear

map on P(V ) obtained by substituting s(z) for yk, that is

Φ−1
(
(zαym)|V

)
= zαsq(z)yr

where m = qk + r, r ∈ {0, . . . , k − 1}.

Proof. We first prove that the linear map Φ above is one-to-one. If p ∈ kerΦ

then p = 0 on V and, in view of Lemma 7, the Nullstellensatz implies that

p = qf . Comparing the degrees in y of both sides, one sees that one must have

q = 0 hence p = 0. The fact that the map is onto is obvious because on V

we have ym = yrsq(z) when m = qk + r, r ∈ {0, . . . , k − 1}. Thus, on V , any

polynomial coincides with a polynomial from P(z)⊗ Pk−1(y).

4.3. The degree of a polynomial on V

Since it is a basic element in the Markov inequality we need to suitably define

the degree of a polynomial on V . The natural definition (which works for any

algebraic set) is as follows.

Definition 10. The degree degV p of a polynomial p ∈ P(V ) is defined as

degV p = min
{
degP : P|V = p

}
.

In particular, for any P ∈ P(z, y), we have degV P|V ≤ degP . In many

cases, equality occurs, but it is not difficult to see that inequality may be strict.

Lemma 11. Let P ∈ P(z, y). We have degV P|V < degP if and only if the

leading homogeneous component f̂ of f divides the leading homogeneous compo-

nent P̂ of P .

Proof. Assume that there existsQ ∈ P(z, y) such that degQ < degP but P = Q

on V . The latter implies that f divides P −Q or Q = P − fT with T ∈ P(z, y).

Since the degree of Q is smaller than the degree of P , the leading homogeneous

component of P and fT must be cancelled. Hence, P̂ = f̂T = f̂ T̂ which shows

that the condition is necessary. Conversely, if P̂ = f̂ t, take Q = P − ft we have

Q = P on V and degQ < degP .
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In general, a polynomial P such that degP = degV p is not unique. For

instance, if deg s = k and p = yk|V then both P (z, y) = yk and Q(z, y) = s(z)

furnish deg p. Yet, the above proof gives an easy algorithm to compute degV p

and find a representative of minimal degree. Note that the lemma shows that

if k > deg s then Φ−1(p) always provides a polynomial of minimal degree for p

(because f̂ which is of degree d in y cannot divide Φ−1(p) which is of degree at

most d− 1 in y). This observation also follows from the next lemma.

Lemma 12. For any p ∈ P(V ) we have

degV p ≤ degΦ−1(p) ≤ max

{
1,

deg s

k

}
degV p

Proof. The lower bound is obvious. Take P such that degP = degV p and P = p

on V . Put δ = degP . So P is a sum of monomials zαym with |α|+m ≤ δ and

Φ−1(p) is a sum of terms zαsq(z)yr when m = qk + r as above. The degree of

Φ−1(p) is therefore not bigger than the maximum of the degree of such terms

which are of the form |α| + qd + r where d = deg s. So we are left with the

problem of estimating δ′ = |α| + qd + r subject to |α| +m = |α| + qk + r ≤ δ.

If d ≤ k we obviously have δ′ ≤ δ (and hence δ′ = δ). For d > k,

δ′ = |α|+ qd+ r ≤ d

k

(|α|+ qk + r
) ≤ d

k
δ.

This readily implies the lemma.

4.4. More on the space P(z)⊗ Pk−1(y)

We need a classical lemma on the way of recapturing the coefficients of

a polynomial in terms of its values on Un.

Lemma 13. Let g(t) =
∑n−1

i=0 ait
i ∈ P(C) and w is a primitive n-th root of

unity then

am =
1

n

n−1∑
k=0

g(wk)

wmk
, m = 0, . . . , n− 1. (13)

In particular,

|am| ≤ ‖g‖Un , m = 0, . . . , n− 1.
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Proof. Look at the factor of aj in the sum on the right hand side of (13) and

observe that
∑n−1

k=0 w
k(j−m) = nδjm. We refer to [15, Lemma 2.2g, p. 85] for

details.

Applying Lemma 13 to g(t) = p(z, ty) (with n = k) we get

Lemma 14. If p(z, y) =
∑k−1

i=0 pi(z)y
i ∈ P(z)⊗ Pk−1(y) then

|pi(z)yi| ≤ max
w∈Uk

|p(z, wy)|, i = 0, . . . , k − 1, (z, y) ∈ C
N+1.

To explain the way we will use this result we first need the following defini-

tion.

Definition 15. A compact set E in V is said to be Uk-invariant if (z, y) ∈ E

implies (z, wy) ∈ E for any w ∈ Uk.

Lemma 16. Let E be a Uk-invariant compact subset of V . If

p(z, y) =
k−1∑
i=0

pi(z)y
i ∈ P(z)⊗ Pk−1(y)

then

‖pi(z)yi‖E ≤ ‖p‖E , i = 0, . . . , k − 1.

4.5. The multiplication homomorphism on P(z)⊗ Pk−1(y)

The isomorphism Φ endows P(z)⊗Pk−1(y) with a structure of P(z)-module

for which the external product is

T (z) · L(z, y) = Φ−1
(
(T (z) · L(z, y))|V

)
.

Now, given Q ∈ P(z)⊗ Pk−1(y), the map

MQ : L ∈ P(z)⊗ Pk−1(y) −→ Φ−1
(
(LQ)|V

) ∈ P(z)⊗ Pk−1(y)

is a P(z)-homomorphism which we may compute as follows. If Q(z, y) =∑k−1
i=0 qi(z)y

i then

MQ(y
j) =

k−1∑
i=0

qi(z)y
i+j , j = 0, . . . , k − 1.

14



Substituting s(z)yi+j−k for yi+j when i+ j ≥ k we find

MQ(y
j) =

k−1−j∑
i=0

qi(z)y
i+j +

k−1∑
i=k−j

qi(z)s(z)y
i+j−k, (14)

and, writing l = i+ j in the first sum and l = i+ j − k in the second one,

MQ(y
j) =

k−1∑
l=j

ql−j(z)y
l +

j−1∑
l=0

qk−j+l(z)s(z)y
l. (15)

Thus, if L =
∑k−1

i=0 Li(x)y
i and MQ(Li) =

∑k−1
i=0 L′

i(z)y
i then the components

L′
i are given in terms of the Li via the relation⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q0 qk−1s qk−2s . . . q2s q1s

q1 q0 qk−1s . . . q3s q2s
...

...
...

. . .
...

...

qk−3 qk−4 qk−5 . . . qk−1s qk−2s

qk−2 qk−3 qk−4 . . . q0 qk−1s

qk−1 qk−2 qk−3 . . . q1 q0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L0

L1

...

Lk−3

Lk−2

Lk−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L′
0

L′
1

...

L′
k−3

L′
k−2

L′
k−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (16)

The matrix above, whose coefficients are elements of P(z), will be denoted

MQ(z) and the corresponding matrix in which s is replaced by yk, will be

denoted by MV
Q (z, y). We therefore have

MV
Q (z, y) = MQ(z), (z, y) ∈ V.

In fact, up to conjugation by diagonal matrices, MV
Q (z, y) is a classical circulant

matrix built on the sequence (q0(z), q1(z)y, q2(z)y
2, . . . , qk−1(z)y

k−1), namely

MV
Q (z, y) = Diag

(
1,

1

y
, . . . ,

1

yk−1

)
×⎛⎜⎜⎜⎜⎜⎜⎝

q0 qk−1y
k−1 qk−2y

k−2 · · · q1y

q1y q0 qk−1y
k−1 . . . q2y

2

...
...

...
...

qk−1y
k−1 qk−2y

k−2 qk−3y
k−3 . . . q0

⎞⎟⎟⎟⎟⎟⎟⎠×Diag
(
1, y, . . . , yk−1

)
(17)
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The classical result on the determinant of circulant matrices, see e.g. [10, Ex-

ercise 300] gives that

detMV
Q (z, y) =

∏
w∈Uk

(
k−1∑
i=0

qi(z)w
iyi

)
.

We proved the following lemma.

Lemma 17. With the notation above,

detMV
Q (z, y) =

∏
w∈Uk

Q(z, wy). (18)

Lemma 18. Let Q be as above. The polynomial detMQ(z) is the zero poly-

nomial if and only if f and Q have a non trivial common factor, that is,

deg(gcd(Q, f)) > 0.

In particular, if f is irreducible then detMQ(z) = 0 if and only if Q = 0 (for

we must have f |Q and Q ∈ P(z)⊗ Pk−1(y) forces Q = 0).

Proof. The determinant of MQ(z) is the zero polynomial if and only if the

determinant of MV
Q (z, y) is the zero polynomial on V . As above, by the Null-

stellensatz, f divides detMV
Q (z, y). Let p be an irreducible divisor of f . The

polynomial p divides detMV
Q (z, y) hence, it divides at least one of the fac-

tors in the right hand side of (18). Thus, for some w ∈ Uk, p(z, y) divides

Q(z, wy). It follows that p(z, y/w) divides Q(z, y) but, as we have seen, either

p(z, y/w) = p(z, y) or it is another irreducible factor of f . Thus, in any case,

f and Q have a common non trivial divisor and this prove that the condition

deg(gcd(Q, f)) > 0 is necessary.

We may proceed similarly to prove that the condition is sufficient with the

help of (12) but a direct proof can be easily derived as follows.

If deg(gcd(Q, f)) > 0 then one can define the polynomial r = f/ gcd(Q, f)

which satisfies rQ = 0 on V (for f divides rQ) but r|V is not the zero polynomial

and the same is true of its pre-image under the isomorphism Φ. Hence, if

Φ−1(r)(y, z) =

k−1∑
i=0

ri(z)y
i,

16



at least one of the ri, say ri0 , is not the zero polynomial. Now, the equality

MQ(r) = 0 gives, for each z such that ri0(z) �= 0, a linear dependency relation

on the columns of MQ(z). Therefore detMQ(z) = 0 on C
N \ {ri0 = 0}, and

thus on the whole of CN , because it is a polynomial.

The lemma can be summarized as follows detMQ(z) is not the zero polyno-

mial as soon as Q and f are relatively prime.

5. Polynomial inequalities on V

5.1. Markov inequalities on V

We use the notation introduced in the previous section. In particular,

V = {f = 0} ⊂ C
N+1, f(z, y) = yk − s(z). To measure the ”‘derivatives”’

of polynomials on V , it seems natural to use the following semi-norm. Given

a compact set E in V = {f = 0} as in the previous section, we set

|p|Vα,E := inf
{‖DαP‖E : P|V = p, P ∈ P(z, y)

}
, p ∈ P(V ).

Definition 19 (Markov set and Markov inequality on V ). A compact set E ⊂ V

is said to be a V-Markov set if there exist constants M,m > 0 such that

|p|Vα,E ≤ M |α|(degV p)m|α|‖p‖E , p ∈ P(V ), α ∈ N
N . (19)

This inequality is called a Markov inequality for E in V or a V -Markov inequal-

ity.

This definition raises evident difficulties as it seems complicated to estimate

|p|Vα,E . In fact, we will only prove a much stronger inequality in which |p|Vα,E is

replaced by its upper bound ‖DαΦ−1(p)‖E . Another obvious difficultly is that,

in contrast with the ordinary case, it is not possible to simply iterate inequality

(19) from the case |α| = n to |α| = n+ 1.

The isomorphism P(z) ⊗ Pk−1(y) 
 P(V ) next suggests the following defi-

nition.

17



Definition 20 (Markov set and Markov inequality onW). LetW be an infinite

dimensional subspace of P(CN+1) which is invariant under derivation. A com-

pact set E ⊂ C
N+1 is said to be a W-Markov set if there exist M,m > 0 such

that

‖Dαp‖E ≤ M |α|(deg p)m|α|‖p‖E , p ∈ W, α ∈ N
N . (20)

This inequality is called a W-Markov inequality for E.

To say that W is invariant under derivation simply means that p ∈ W

implies Dαp ∈ W for all α and, of course, it suffices to check the property for

|α| = 1. The space P(z)⊗ Pk−1(y) is obviously invariant by derivation.

The constant m in (19) and in (20) is called the exponent of the respective

inequalities.

Lemma 21. Let E be a compact subset of V and W = P(z) ⊗ Pk−1(y). If

E is a W-Markov set then E is also a V -Markov set. The exponent m in the

W-Markov inequality may be used in the V -Markov inequality as well.

Proof. Take p ∈ P(V ) and set P = Φ−1(p). Since P ∈ W, we may apply (20)

to get

‖DαP‖E ≤ M |α|(degP )m|α|‖P‖E ,

and, using the bound for degP given in Lemma 12,

‖DαP‖E ≤
(
max

{
1,

deg s

k

})m|α|
M |α|(degV p)m|α|‖p‖E .

The lemma follows since |p|Vα,E ≤ ‖DαP‖E .

From now on, we denote by π the projection from V ⊂ C
N+1 onto the space

C
N , i.e. π(z, y) = z for (z, y) ∈ V . In particular, if E is a compact subset of V

then

π(E) = {z ∈ C
N : (z, y) ∈ E for some y ∈ C}.

Theorem 22. Let E be a UK-invariant compact set in V and W = P(z) ⊗
Pk−1(y). Then E is a W-Markov set if and only if π(E) is a Markov set in
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C
N . In particular, E is a V -Markov set with exponent m

(
1 + (k−1)d

k

)
as soon

as π(E) is a Markov set with exponent m in C
N .

The definition of a Uk-invariant set is given in Definition 15 above.

Proof. The second statement is a consequence of the first one via Lemma 21 and

the fact that π(E) is a Markov set when E is a W-Markov set is obvious since

P(z) ⊂ W. To prove the remaining claim, we assume that π(E) is a Markov set

and prove that E is a W-Markov set. Fix a polynomial P ∈ P(z)⊗ Pk−1(y),

P (z, y) =

k−1∑
i=0

pi(z)y
i,

and an (N + 1)-index α. We write β = (α1, . . . , αN , 0) so that Dα = DβDαN+1

where DαN+1 indicates αN+1 derivations with respect to the last variable, i.e,

with respect to y. Thus, we have

DαP (z, y) =
k−1∑
i=0

Dβpi(z)D
αN+1yi. (21)

Markov inequality (1) for π(E) yields

‖Dβpi‖π(E) ≤ M |β|(deg pi)m|β|‖pi‖π(E), i = 1, . . . , k − 1. (22)

Now, in view of Corollary 5 which we apply with q(z) = si(z) of degree id,

d = deg s, we have

‖pi‖π(E) ≤ C
1/k
0

(
id+ k deg pi

)idm/k∥∥pi|s|i/k∥∥π(E)
(23)

with a constant C0 depending only on E, k and s. Yet, since E ⊂ V ,

‖pi(z)|s(z)|i/k‖π(E) = ‖pi(z)yi‖E . (24)

Since E is Uk-invariant, we may next use Lemma 16 to get∥∥pi(z)yi∥∥E ≤ ‖P‖E . (25)

Now using (23), (24) and (25) in (22), together with the fact that deg pi ≤ degP

and |β| ≤ |α|, we obtain

‖Dβpi‖π(E) ≤ M |β|(degP )m|β|C
1
k
0 (id+ k degP )

m id
k ‖P‖E (26)

≤ C ′(degP )m|α|+m
(k−1)d

k ‖P‖E (27)
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where C ′ depends only on E, k and s. Therefore

‖Dβpi‖π(E) ≤ C ′(deg p)m(1+
(k−1)d

k )|α|‖P‖E (28)

where we used |α| ≥ 1. This implies the required inequality, as follows from

(21), ∥∥DαP
∥∥
E
≤ C ′′ max

0≤i≤k−1
‖Dβpi‖π(E)

where C ′′ = max0≤αN+1≤k−1

∥∥∥∥∑k−1
i=0 |DαN+1yi|

∥∥∥∥
π(E)

.

Example 23. Let V = {y3 = z2 − 1} ⊂ C
2 and D be the (closed) unit disc in

C. The compact set E = {(z, y) ∈ V : y ∈ D} is a V -Markov set.

Proof. We have π(E) = {z ∈ C : z2 − 1 ∈ D} which is the lemniscate of

Bernoulli (with its interior) and E is U3-invariant. By a result of Szegö, see

e.g. [21, Th.15.3.5], and Bernstein’s pointwise estimate, see e.g. [21, Th.15.1.1],

we can show that π(E) is a Markov set and satisfies the Markov inequality (1)

with m = 1. Therefore, the set E is a W-Markov set and the conclusion follows

from the theorem. If follows from the proof, see (28), that the exponent can be

taken as 1 + 2 · (2/3) = 7/3.

5.2. Division inequality on V

In contrast with the case of Markov inequality, the notion of division set

immediately extends to the case of an algebraic set.

A compact set E in V is PV -determining if for all p ∈ P(z, y), p = 0 on E

implies p = 0 on V .

Definition 24 (Division set and division inequality on V ). A PV -determining

compact subset E in V is said to be a V -division set if, for any non constant

polynomial q on V , there exists a sequence DV (E, q, n) in R
+ which grows

polynomially in n such that

‖p‖E ≤ DV (E, q, n)‖pq‖E , degV p ≤ n.

Any explicit bound for DV (E, q, n) is called a V -division inequality.
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A large class of V -division compact sets is given by the following theorem.

Theorem 25. Assume that the polynomial f defining V is irreducible and let

E be a Uk-invariant compact set in V . If π(E) is a Markov set then E is

a V -division set.

This is a particular case of the following result which does not require f to

be irreducible.

Theorem 26. Let E be a Uk-invariant, PV -determining compact set in V such

that π(E) is a Markov set in C
N and q be a non constant polynomial in P(z, y).

There exists a sequence DV (E, q, n) that grows polynomially in n such that

‖p‖E ≤ DV (E, q, n)‖pq‖E for degV p ≤ n

if and only if q and f are relatively prime.

It is readily seen that any Uk-invariant compact set in V is PV -determining

excepted when the y-projection of E reduces to {0}.

Proof. The condition is obviously necessary for, if q and f are not relatively

prime then w = f/ gcd(q, f) is a polynomial which is not zero on V , and the

inequality

‖p‖E ≤ DV (E, q, n)‖pq‖E

cannot hold for p = wn. Indeed the right hand side is zero while the left hand

side is not (since, E is PV -determining, ‖w‖E = 0 would imply ‖w‖V = 0 which

is not true).

We now assume that q and f are relatively prime. Let p ∈ P(V ). Put

P = Φ−1(p) and P =
∑k−1

i=1 piy
i. In view of Lemma 18, the determinant of

the polynomial matrix Mq(z) is not zero. We may therefore apply Corollary 6

with P = (p1, . . . , pl)
T and A = Mq(z) on the compact set π(E) in C

N which

is assumed to be a Markov set. We obtain the inequality

‖P‖π(E) ≤ C1(r + n)rm‖Mq(z)P‖π(E)
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where P = (p1, . . . , pl)
T , n = max

i=0,...,k−1
deg pi, r = deg detMq(z), m is the

Markov exponent for π(E) and C1 depends only on q, s and π(E). In fact,

using Lemma 12,

deg pi ≤ degP ≤ λ degV p, λ = max

{
1,

deg s

k

}
.

Hence, the above two estimates yield

‖P‖π(E) ≤ C1(r + λ degV p)rm‖Mq(z)P‖π(E). (29)

Now, on one side, we have

‖p‖E = ‖P‖E ≤ C2‖P‖π(E), C2 =

∥∥∥∥ k−1∑
i=0

|yi|
∥∥∥∥
E

. (30)

On the other side, see (16), Mq(z)P gives the components of Φ−1(Pq), that is

Mq(z)P = P̃ = (p̃0, . . . , p̃k−1), Mq(P ) = Φ−1(Pq) =

k−1∑
i=0

p̃iy
i.

Using again the division inequality for π(E) from Corollary 5,

‖p̃i‖π(E) ≤ C3(i deg s+ k deg p̃i)
(mi deg s)/k‖p̃i|s|i/k‖π(E) (31)

where C3 depends only on s, k and π(E). In view of Lemma 12,

deg p̃i ≤ deg(Pq) = degP + deg q ≤ λ degV p+ deg q.

For d = deg s, taking into account that i ≤ k − 1, (31) gives

‖p̃i‖π(E) ≤ C3 ((k − 1)d+ kλdegV p+ k deg q)
md(k−1)/k ‖p̃i|s|i/k‖π(E)

Now, since ‖p̃i|s|i/k‖π(E) = ‖p̃i(z)yi‖E , a use of Lemma 16 gives

‖p̃i‖π(E) ≤ C3 ((k − 1)d+ kλdegV p+ k deg q)
md(k−1)/k ‖pq‖E .

Observe that, in order to use Lemma 16, we needed E to be Uk-invariant.

Summing up,

max
0≤i≤k−1

‖p̃i‖π(E) ≤ C3 ((k − 1)d+ kλdegV p+ k deg q)
md(k−1)

k ‖pq‖E . (32)
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From (29), (30), (32) and ‖Mq(z)P‖π(E) = max0≤i≤k−1 ‖p̃i‖π(E), we obtain

‖p‖E ≤ C4(degV p)m(d(k−1)/k+r)‖pq‖E (33)

which gives a bound with the required properties.

From (16), we deduce that the integer r = deg detMq(z) used in the proof

above satisfies r ≤ k deg q+(k−1) deg s so that the exponent in (33) is bounded

by mk(deg q + deg s).

5.3. Conclusions and final remarks

Our results concern algebraic hypersurfaces of the form

V = {zkN+1 = s(z1, . . . , zN )} ⊂ C
N+1, (34)

where s is a non constant polynomial of N variables. It is not clear to what

extent our results can be generalized by using similar approach to other classes

of algebraic varieties. We will now briefly discuss some possible generalizations

of our results.

If for the variety U = {(u, v, w) ∈ C
3 : 2v2+w2 = 2uv+2vw−2uw} we take

the linear transformation (u, v, w) = (x, y, z − x + y), we obtain the algebraic

manifold {(x, y, z) ∈ C
3 : z2 = x2−y2} that is of the form (34). Nondegenerate

linear mappings do not change properties of sets related to polynomial inequal-

ities, so the presented methods work on compact subsets of U . Therefore, our

results can be used also for images of algebraic hypersurfaces of the form (34)

under linear transformations. It seems likely this observation can be extended to

certain polynomial mappings. A characterization of such polynomial mappings

and algebraic sets obtained in this way would be interesting.

In [17] (Exercise on p. 107) one can find

Lemma 27. Let d ∈ N and E ⊂ C
N be a compact, circled set, i.e. (z1, . . . , zN ) ∈

E implies (eitz1, . . . , e
itzN ) ∈ E for all real t. Then for any polynomial pd =

hd + hd−1 + . . .+ h0 of degree d written as a sum of homogeneous polynomials,

we have ‖hj‖E ≤ ‖pd‖E for j = 0, . . . , d.
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It appears that for compact subsets of varieties of the form (34), the Uk-

invariance is a sufficient assumption to obtain the analogous estimate, see Lemma

16 in Section 4.4. The Uk-invariance is closely related to the structure of the

algebraic set V . This suggests the following question: what other classes of

algebraic varieties with symmetries could be analyzed in a similar fashion.

In the general case, when Z is the set of zeros of a polynomial g in N +

1 complex variables, one can ask about a condition which implies a similar

estimate as in Lemma 16 for compact subsets of Z. For instance, can one obtain

analogous results studying compact subsets of toric varieties? Toric varieties is

an important class frequently considered in algebraic geometry. As an example,

we can take the cuspidal cubic C = {(x, y) ∈ C
2 : x3 = y2} which is a toric

algebraic set of the form (34).

Finally, we point out that our results allow us to construct an admissible

mesh on V (see [8] for the definition). Namely, if E is a Uk-invariant compact

set in V and (An)n∈N
is an admissible mesh for π(E) then π−1 ((An)n∈N) is an

admissible mesh for E.
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