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1. Introduction

Given an equation P(z1,...,2,) =0, where P is a real polynomial, a natural and often important issue
is to locate its solution set P~1(0) in a region of R™. Throughout this work, we suppose that the region of
interest can be confined in a box B™ = II}"_,[a;, b;], and that zero is a regular value of the restriction of P to
B". A localization of the zero set P~!(0) is obtained by covering B™ with smaller n-dimensional boxes B}
such that the intersection of P~1(0) with each BY is either the empty set or the (analytic) graph of a real
function of n — 1 variables. Notice that singular points or self-intersections arising from multiple irreducible
components do not occur in P~1(0) N B™.
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If n = 1, the hypothesis of zero being a regular value of P corresponds to P having only simple roots,
and localization may be viewed as the concept of root isolation. Consider Vincent’s theorem, a result from
the 1830s which essentially states that the number of variations of signs in a real univariate polynomial
without multiple roots can be reduced to either zero or one through a succession of simple Md&bius trans-
formations [15,16]. Vincent’s theorem can be seen as the culmination of the work by Lagrange [10] on the
approximation of real zeros of polynomial equations using continued fractions, and of methods for root iso-
lation by Budan and Fourier [15]. Vincent’s theorem is the source of an effective root separation algorithm
which surpasses algorithms based on the celebrated Sturm’s method [5]. Our previous research [8,7,11] sug-
gests that an extension of Vincent’s theorem must exist for polynomials with real coefficients depending on
multiple variables. Indeed, we have been able to successfully apply Mo6bius transformations in a way similar
to Lagrange and Vincent in order to localize zero sets of real multivariate polynomials and thus prove bifur-
cation and enumeration results for classes of relative equilibria in Celestial Mechanics. Such results provide
a more complete answer to the Chazy—Wintner—Smale finiteness conjecture, which is problem 6 in Smale’s
list [14] and 9 in the list [1].

The present article contains two theorems which amount to an extension of Vincent’s theorem to real
polynomials P(Xjy,...,X,), namely Theorems 2.4 and 2.5. Theorem 2.4 states that if P = 0 does not
intersect a box B"™ = II}" , [a;, by, then it is possible to find a finite covering of B" by n-dimensional boxes,
and corresponding changes of variables, so that in the new variables the polynomial P assumes the form
of polynomials whose coefficients all have the same sign. If P=1(0) is the graph of a real function x,, =
f(z1,...,2n—1) in the n-dimensional box B"™ = II}" ; [a;, b;], so that for each z in the box Hl":_f [a, b] the zero
(z,z,(x)) is simple, then Theorem 2.5 affirms the existence of a finite covering of B", and corresponding
changes of variable such that, in the new variables, P assumes the form of polynomials which have either a
single or no variation of signs if written as polynomials in the last variable with coefficients depending on
the remaining n — 1 variables. Moreover, the converse of these statements also holds and corresponds to a
special version of the implicit function theorem for multivariate real polynomials.

Let us briefly introduce the concept of relative equilibrium and explain why our localization results
are helpful in the determination of relative equilibria. Consider N bodies of masses my,...,my, and let
q1s...,qn € R? denote their respective positions. A relative equilibrium of the Newtonian N-Body Problem
is a planar solution in which the bodies rotate with uniform angular velocity around the center of mass.
Under the assumption that the center of mass is at the origin, the initial positions of a relative equilibrium
must satisfy the so-called relative equilibrium equations, namely

mimy )
Am;q; — Z —3 = 5@ —a)=0, j=1,...,N, (1.1)
2T, — il

where X is a positive constant. Notice that the left-hand sides of equations (1.1) depend on the Cartesian
coordinates of the positions through polynomials and square roots of polynomials. There are several ways
of writing equations (1.1) in polynomial form, for instance by using mutual distances as coordinates as in
references [2,9]. Thus the relative equilibrium problem can be formulated as a problem in real algebraic
geometry: it is required to determine the intersection of several real algebraic hypersurfaces depending on
parameters (the masses). In section 3 we examine the (5 + 1)-body problem consisting of four unit masses
placed at the vertices of a square, an arbitrary mass m placed at the center of the square, and an infinitesimal
mass on the plane of the square. As it is explained in section 3, equations (1.1) reduce to a single equation for
the position of the body with infinitesimal mass. It is possible to write the latter equation as a polynomial
equation in two variables (sum and difference of suitable mutual distances) subject to one constraint, which
is also a polynomial equation. If we pick a value for the parameter m, we have the problem of finding
the intersections of two algebraic curves in an open set of R2. Using suitable coverings of the open set by
two-dimensional boxes, we can reduce the problem to finding the intersections of the graphs of two smooth
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functions. If the number of intersections is already known to be finite, then we localize the zeros of the
restriction of each polynomial to the sides of the boxes containing a point of intersection of the two graphs,
and may use the intermediate value theorem to obtain approximations as good as desired of the coordinates
of the points of intersection. Theorems 3.1 and 3.6 contain enumeration results for the classes of relative
equilibria of the centered square plus a body of infinitesimal mass: depending on the value of the central
mass m € R = R U {£oco}, we may have 1, 2 or 3 classes of relative equilibria on each semi-median of the
square, and 0, 1 or 2 classes of relative equilibria in each semi-diagonal of the square.

As a final note, we would like to comment on the possibilities of implementing our methods algorithmically.
The techniques in the present paper seem reminiscent of interval arithmetic methods, such as the Krawczyk
method, for which algorithmic implementations have been performed, see for instance reference [12]. We
thank one of the reviewers for his comments on the algorithmic potentialities of our work, and for pointing
out to us the aforementioned reference.

2. Localization of real algebraic hypersurfaces
2.1. Univariate polynomials

Let us review some definitions, notations and basic results.

Let R[X] denote the ring of real polynomials in the unknown X. Given P = . a; X7 € R[X]\ {0},
we say that there exists a variation of sign between two terms a;X* and ; X!, with k < I, if one of the
following conditions holds:

(i) I = k41, and a;, and a; have opposite signs; or
(ii) I > k+1, and agq1,ak12,--.,a—1 are all zero, while a and a; have opposite signs.

The number of variations of signs in the polynomial P, denoted by V' (P), is the number of pairs k, [ satisfying
either condition (i) or (ii). Polynomials whose coefficients are all nonzero receive a special designation.

Definition 2.1. A polynomial P = Zj:o a; X7 € R[X] is said to be complete if a; # 0 for all j =0,...,d.

One of the earliest results on the relationship between the coefficients of a real polynomial P € R[X] and
the number of positive roots of P is the famous Descartes’ rule of signs. Proofs can be found in [15,17].

Descartes’ Rule of Signs. Let P = ag X% + ... + a1 X + ao X" be a real polynomial whose coefficients are
all nonzero, where b; € Z for i =0,1,...,d and 0 < by < by < -+ < byq. If Z(P) denotes the number of
positive zeros of P counted with multiplicities, then

Z(P)<V(P), and V(P)=Z(P) (mod 2),
that is, V(P) and Z(P) have the same parity.

Albeit generally inconclusive, Descartes’ rule of signs is greatly empowered by the application of suitable
Mébius changes of variables. Consider Mobius transformations of the form

aX +b

a,b = ) 2.1
bab X1 (2.1)
where a,b € R, a < b. We verify that ¢,; maps the interval [0, c0) to (a,b]. Given P € R[X], let us denote

by P | (asb] the numerator of the rational function P o ¢, 3, that is
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(d = degree of P).

d aX +b
Ply=&X+1) -P( )

X+1

Observe that if V(P|(a b]) =0or V(P|(a b]) = 1, Descartes’ rule of signs respectively says that P does not
have zeros or has a unique, simple zero in (a,b]. Thus finding transformations ¢, such that V(P } (@ b]) =0
or V(P| @ b]) = 1 becomes a problem of foremost importance in the root analysis of real polynomials.

We remark that | (ap) 15 A0 algebra automorphism of R[X] (indeed, of C[X]) whose inverse is obtained
via the inverse of ¢, (viewed as a function), namely

X —-b

wa,b: a_ X'

Every polynomial in R[X] can be written as a constant times a product of real monic factors of either
degree one or degree two, where the latter can be further factored as (X — 8)(X — ), 3 € C \ R. So, in
order to compute P |(a7b}, it suffices to consider the effect of |(a7b} on monic polynomials of degree one. If
P = X — «, where a # «, we have that

Pl = (a = @)X ~ Gusla)],
and for P = (X — 8)(X — ), B € C\ R, we find
Py = |0 — BI2IX? = 2R(s(B)X + [Yus ()],
where R stands for real part.
The following theorem is closely related to key results by Lagrange [10] and Vincent [16], see also [3,4].

It contains a partial converse of Descartes’ rule of signs.

Theorem 2.2. Let P be a real polynomial with zeros x1,...,xq € C, not all of which are equal, and let
a,b € R be such that a < b and b —a < A(P), where

A(P) = min{|z; — x| : xj # 1}
<k

(1) z; ¢ [a,b], for all j if and only if V(P|(a7b]) =0 and P|(a7b] is a complete polynomial.
2) z; € (a,b] is a simple zero of P, for some j and for a sufficiently close to z;, if and only if V(P =1
J J (a,b]

and the polynomial P|(a . is complete.

Proof. The polynomial P| (@) has a factorization

P(a)(X = ®ap()" ... [X? = 2R(%ap(8)) X + [ap(B)]™ .. (2.2)

where « denotes a real zero of P and 8 denotes a complex, nonreal zero of P. We prove item (1). Since
a ¢ [a,b] we have ¥, () < 0. If 8 = p+io, then A(P) < 2|o|. Consider the identity

la = BPR(vap(8)) = (p — a)(b—p) — 0. (2.3)

The maximum of (p — a)(b — p) is 1(a — b)?. Thus b — a < A(P) implies (p — a)(b — p) — 0% < 0, and
from (2.3) we obtain R(¢4(8)) < 0. It is clear from expression (2.2) that P’(a 5 18 complete. The reverse

implication is straightforward.
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For item (2), firstly notice condition b — a < A(P) implies that at most one real zero of P, say 1, is
in the interval (a,b]. If 1 is simple, we can write P‘(a’b} = (X — Ygp(z1))R with R € R[X]. From item
(1), V(R) = 0 and R is complete. Since, for b fixed, lim,_,,, ¥4 5(x1) = 00, a complete polynomial P|(a,b]
can be obtained by choosing a sufficiently close to z1, and in this case it is clear that V(P|(a7b]) = 1. The

reciprocal is immediate (and does not really require the completeness of P | (a b]). ]

Observe that, for real polynomials whose roots are all equal, and necessarily real, we may omit the
hypothesis on b — a in Theorem 2.2, and item (1) still holds, while item (2) is true only if the degree of
P is one. Due to the chief role played in our study by intervals (a,b] as in Theorem 2.2, we introduce the
following terminology.

Definition 2.3. We call an interval (a,b] so that b —a < A(P) a (Lagrange—Vincent) A-interval for the
polynomial P, or simply a A-interval if the polynomial is clear from the context.

2.2. Multivariate polynomials

Let us now consider real polynomials P in the unknowns Xi,...,X,, n > 2. Our goal is to analyze zero
sets of such polynomials in R™, so we view P as a polynomial function in the real variables z1,...,x,. We
indicate by Pz, j =1,...,n a polynomial in z; whose coefficients are function of the variables zy, k # j.

Firstly we examine the case n = 2. Let R = [a1, b1] X [ag, b2] be such that the algebraic curve P(z1,22) =0
and the rectangle R do not intersect, and pick x; = x € [a1,b1]. According to item (1) of Theorem 2.2, it
is possible to cover [ag, by] with finitely many A-intervals Jy = (cg, di] such that, for each k, V(Pg; |]k) =0
and Pg; | I

Pg; |Jk is complete, for every j, ng) () has the same sign. For each k and each j, let Ij(k) = (agk), bgk)] be a

is a complete polynomial. For each k, let us write the polynomial Pg; | J, 88 Zj QS@ (a:)x% Since

A-interval for Qg-k) such that z € IJ(-k) and whose closure is as in item (1) of Theorem 2.2. Set I}, = ﬂjI](-k).
The rectangles Iy, X Ji form a covering of the segment {z} X [az, by] and, for arbitrary z1 € Ij, we have that
V(P@|Jk) =0 and P@’Jk
can repeat the previous argument for arbitrary x; € [a1,b;1], and, using compacity, obtain a finite covering

is complete. Since P does not vanish in the rectangle R = [ag, b1] X [az, b2], we

of R by rectangles Ij, x Ji such that, for all k, (Pg; | Jk)ﬁ | I is a polynomial whose coefficients all have the
same sign. Conversely, the existence of such finite covering {I; x Jx} clearly implies that P~1(0) N R = 0.

Now consider a real algebraic hypersurface P(z1,...,x,) = 0, where n > 2, and suppose P~1(0) does
not intersect a box B" = M}, [a;, by]. Pick = € B! = I} [a;, b]. As in the preceding paragraph, we may

cover the interval [ay, b, | with finitely many A-intervals Jj so that, for all k, Py with x1,...,2,-1 the

(
coordinates of ) is a complete polynomial with zero variations of signs. By con|t{f1uity, each coefficient of
each P I does not vanish in an (n—1)-dimensional box containing x, so we can apply the same procedure
to the coefficients of Pg; |Jk
to n — 2. By proceeding recursively like this, we will arrive at the two-dimensional setting discussed in the

and each such (n — 1)-box separately, reducing the dimension of our setting

above paragraph, wherefrom our analysis of ¥ can be completed. The following theorem summarizes our
conclusions.

Theorem 2.4. Consider the hypersurface P = 0, where P € R[X1, ..., X,]. P~1(0) does not intersect the box

B =117 [ar, by] if and only if there exists a finite covering of B™ by n-bozes IIY_, Jy, where Jy = (cx,da],
for all A\, such that

P

H;’\':lj)\ = ((Pw’\n Jn)...)a|J1

s a polynomial whose coefficients all have the same sign.
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We remark that the order of the M&bius transformations in Theorem 2.4 is immaterial. It appears that, in
principle, a covering {IIY_,Jy} as in Theorem 2.4 can be determined algorithmically. In [8,7], such coverings
were found through careful inspection of numerical plots. It is noticeable that, even though we have used
continuity in our argument, some of the boxes in the coverings may turn out to be not so small, as the
dimensions of such boxes depend ultimately on the minimum distance between roots of polynomials in one
variable.

We may now consider the possibility of P = 0 intersecting a box B". By shrinking 8™ and reordering the
variables x1, . .., T, if necessary, we may assume P~1(0)NB" is the graph of a function z,, = f(x1,...,2Z,_1).
Since 0 is a regular value of P, for each fixed (x1,...,2,-1) in the domain of f, the corresponding zero
xy, of Pg is simple. In this case, our construction of a suitable covering {II¥_;J\} may be performed in
essentially the same way as above, employing both items of Theorem 2.2 in the first step, the only change
being that in some boxes IIY_; Jy a single variation of signs occurs in the complete polynomial Pg; | 5.
Theorem 2.5. Let P € R[Xy,...,X,]. Suppose that P=(0) is the graph of a real function z, =
f(z1,...,2n_1) in the n-dimensional box B™ = 117, [a;, by in R™, that is, for each x € B~ = Hf;ll [ar, bi],
there exists a unique T () € [an,by] such that P(x,x,(x)) = 0. Moreover, suppose that x,(x) is a simple
zero of the univariate polynomial P(x,x,), for all x € B"~L. There exists a finite covering of B™ by n-boxes
II%_, Jx, where Jx = (ca, dy], for all X, such that the polynomial

((PQ|J))6|J1
has a single or no variation of signs if written as a polynomial in the last variable with coefficients depending
on the remaining n — 1 variables. The converse of these statements also holds.

The converse statement in Theorem 2.5 can be used to prove the existence of a real function f = f(x)
such that P~1(0) is the graph of f over some (n — 1)-dimensional box B"~!. In addition, for each fixed
x € B" L the zero f(x) of the polynomial P(x,x,) being simple (because of the single variation of signs)
implies that zero is a regular value of P, and thus that P~1(0) is an analytic manifold. This result can be seen
as a non-differentiable, non-local version of the implicit function theorem for real multivariate polynomials.

3. Relative equilibria of a (5 + 1)-body problem

Consider the Newtonian five-body problem from Celestial Mechanics. Among its symmetrical planar
solutions one finds the relative equilibrium formed by four bodies of equal masses at the vertices of a square
which uniformly rotates about a fifth body of arbitrary mass located at the center of the square. We may
choose the masses of the bodies at the vertices of the square equal to one. Consider an additional particle of
infinitesimal mass on the plane of the square. A theorem by Bang and Elmabsout [6] (expanding previous
work by M. Lindow) asserts that, in order to form a relative equilibrium solution of the (N+1)-body problem
where N equal masses are placed at the vertices of a regular N-gon, the infinitesimal mass particle must
lie on one of the lines of symmetry of the N-gon. This theorem remains valid if a particle of mass m is put
at the center of the N-gon. In this section we present an enumerative study of (classes modulo similarities
of) relative equilibria in the case N = 4 (i.e., the regular N-gon is a square) and m € R = R U {4o0}.
Enumeration is made possible by reframing the bifurcation problem in terms of studying the intersections
of two real algebraic curves on the plane. The localization results in Theorems 2.2, 2.4 and 2.5 guarantee the
existence of Mdbius transformations which allow us to determine the points of intersection. Due to the size
of the polynomials involved, our computations are made with the help of Mathematica. Rational numbers
are represented using decimal notation, and all calculations are exact.
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/-,

Fig. 1. A relative equilibrium formed by a centered square plus one body on one of its medians.

3.1. Relative equilibria on the medians

Consider Fig. 1, which depicts a square formed by four bodies of unit mass placed at the points ¢; = (1,1),
g2 = (—1,1), g3 = (—=1,-1) and ¢4 = (1, —1), a fifth body of mass m located at g5 = (0,0), and a body with
infinitesimal (effectively zero) mass on the z-axis. In order to obtain a solution of the relative equilibrium
equations (1.1) for the (5 + 1)-Body Problem, we must have, after plugging the positions and masses into
the equation for the body at ¢,

(1,1) - (1,-1) n (1,1 —(-1,1)  (1,1)—=(-1,-1) (1,1)

AL1) = 93 23 (2v/2)3 T |

whence

:2—\1/§<m+i+%). (3.1)

Let x denote the position of the infinitesimal body on the median of the square indicated in Fig. 1 as the

A

zr-axis. Let s and t represent the distances from the infinitesimal body to the bodies at the vertices ¢; and
g of the square, respectively. The relative equilibrium equations (1.1) for the body with infinitesimal mass
reduce to

r—1 x+1 x
where A is given by (3.1) and
s2=@-12+1, =(@+1)>*+1. (3.3)

See reference [7] for a detailed discussion about relative equilibria in the context of a restricted N-body
problem.

Without loss of generality, from now on it will be assumed that x > 0, since the case x < 0 can be
obtained by symmetry. The values = 0,00 will be included in our analysis. From equation (3.2), we find
that

m = <gpf7;/§) {4\/§[f(x—1)+f(ac+l)] _ (%ﬁ) m} (3.4)

where f(w) = w/(1 + w?)?/2. Fig. 2 depicts the graph of m as a function of z. Notice the line z = /2 is
the only vertical asymptote. Our main goal in this subsection is to demonstrate the following theorem.

Theorem 3.1. On the semi-medians (including the points at 0 and co) of the centered square relative equilib-

rium with central mass m € R, the possible numbers N of classes relative equilibria of the planar restricted
(5 + 1)-body problem are as follows:

Q) If—oo<m<—%—% or M (ap,up) < m < 0o, we have N' = 1.
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Fig. 2. The graph of m as a function of x > 0. The vertical line is the asymptote & = /2.

(I1) If—% —1<m<0orm=M(ay,up), then N'=2.
(IIT) If 0 < m < M(ap,up), then N = 3.

In the above items, M (ap, up) == 0.187457. In item (II), the degenerate relative equilibrium associated with

m = —% — L is . = oo. In item (III), the degenerate relative equilibrium associated with m = 0 is x = 0,

the center of the square.

The proof of Theorem 3.1 is the result of a detailed analysis of m as a function of x given by equation (3.4).
In order to understand how m behaves near x = 0 and near x = co, we consider the Taylor expansions
of the left-hand side of equation (3.4) at z = 0 and at z = o

1 9 1 1 _
m:(zﬁ-ﬁ).ﬁg—FO(lﬁ), and m:—%—i—‘rO(fE 3), (35)

where the latter expansion is obtained by firstly replacing z with 1/z, and then expanding at # = 0. The
first equation in (3.5) shows that = 0 is a local minimum of the left-hand side of (3.4), while the second
equation in (3.5) shows that m = 1/v/2—1/4 is a horizontal asymptote of the graph of m as a function of z.
Thus both = 0 and & = co can be viewed as degenerate relative equilibria associated with the bifurcation
values m = 0 and m = —1/v/2 — 1/4, respectively. The bifurcating equilibria split into the positive and
negative r-semiaxes, and it seems enlightening to identify z = oo with £ = —oo to understand how these
bifurcations work.

Fig. 2 shows the existence of one additional bifurcation value for m, namely a small positive number
which is approximately 0.187457. The presence of such bifurcation is a more subtle feature of equation (3.4)
and requires a deeper study.

Let us introduce the variables a =t —s, u = s+t and v = st. Variables a, u, v and x satisfy the relations

v =u? —a®, 4z =au, (3.6)
and
4(4 —u?)v + (32 — 8u* +ut) =0 (3.7)

The latter relation is obtained from the Cayley—Menger determinant as a condition of planarity: the volume
of the tetrahedron formed by the central body, the bodies at the upper vertices of the square and the
infinitesimal body in Fig. 1 must be zero. Reference [13] contains the definition and additional information
on the Cayley—Menger determinant.
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We compute the expression of m in the variables a, u,v with the help of Mathematica,

au?P(u,v)
4v3(128v/2 — a3u3)’

(3.8)

where
P(u,v) = 16v2(4 — u®)u® + 16v2(—4 + 3u®)v + (1 + 2v2)uv®.

Lemma 3.2. a and u are monotonically increasing functions of x and map x > 0 onto a > 0 and u > 2v/2,
respectively.

Proof. Consider the expression t + €s, ¢ = £1 and recall (3.3); e = —1 gives a(x), and € = +1 gives u(x).
Denoting the derivative by a prime, we have that

€ .
S

1 -1
(t—l—es)':x—i_ " T

If e = +1, the right-hand side vanishes only at x = 0 and is positive at x = 1. If ¢ = —1, the right-hand side
is always positive. O

Lemma 3.2 tells us that either variable a or u can be used in place of . We can solve the third equation
n (3.6) for v and substitute the result into P(u,v), thus producing a rational function of u whose numerator
will be denoted by Q(u) and whose denominator is always positive. The zeros of Q(u) are the zeros of m in
x > 0, and the sign of @) determines the sign of m.

Proposition 3.3. Only two relative equilibria on x > 0 correspond to m = 0, namely the ones at approximately
xo = 0.98623 and x1 = 2.26614. The sign of m is positive on the intervals 0 < x < x¢ and V2 << T,
and negative on the intervals ro < x < V2 and z > z1.

Proof. Consider the polynomial
Qu) = —524288v2 4 - - - — 256v/2u'® — 24(1 + 2v2)u!! + (1 + 2v2)u'?.

The interval 0 < z < v/2 corresponds to 2v/2 < u < 2v/2 4+ /2 ~ 3.6955. We apply Mobius transformations
to isolate the roots of Q.
Firstly we compute Q(u) = Q(u + 2v/2),

262144 + 589824V/2 + (425984 + 851968v/2)u — (—2949120 + 5029888+/2)u> —

Coo 4 (—432128 4+ 905216v2)u” + - - + (1 4+ 2v2)u'?,

and observe that the result is a complete polynomial with two variations of signs. By Descartes rule of signs,
@ has either zero or two roots on u > 2v/2.
In order to show that Q(u) has two roots, we apply a suitable Mobius transformation. We compute

Q| gy = — (14470751 + 10232548V/2) — (135839144 + 96143318V2)u — ...

+ (310944768 + 394997760v/2)u® + - - - + (262144 + 589824v/2)u'?,

and verify that it has a single variation of signs. Hence @ has a root in the interval 2¢/2 < u < 1 + 21/2,

and another root on u > 1 4+ 2v/2 > 2/2 + /2.
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Finally we may obtain decimal approximations as precise as desired of the roots ug < u; of @) using
Mbobius transformations. We find that

up ~ 3.22386, u; ~ 5.02922,

and these values give the approximate values zy and x; in the statement of the proposition (we express
22 as a rational function of u? by inverting u = t + s). The changes of signs of m follow easily from the
fact that uy < 2v/2+ /2 < u; and the fact that, while Q goes from positive to negative and then back
to positive when u increases through ug and then through u;, the denominator of m in (3.8) changes signs

from positive to negative at u = 2v/2 + 2. O

Remark 3.4. The relative equilibria corresponding to m = 0 are indeed relative equilibria of the (44 1)-body
problem. As far as we know, they have not been previously determined. Notice there is an additional relative
equilibrium at x = 0.

Our next goal is to prove that, in addition to the bifurcations at m = —1/4 — 1/4/2 and m = 0, there
exists only one additional bifurcation, namely when m = 0.187457 (and at x =~ 0.763729). We will work
with the variables a and u. The planarity condition (3.7) becomes

F(a,u) := (4 —u?)a® + 4(u* — 8) = 0, (3.9)
and, using the first equation in (3.6), the mass function (3.8) can be written as the rational function

3,2
M(a,u) a’u*G(a, u)

)= 4(128v2 — a3ud)(u? — a2)3’ (3.10)

where

G(a,u) :=1024v2a — (1 + 2v/2)a%u + 768v/2(4 — a®)u? + 3(1 + 2V/2)
a*u? — 256v2u* — 3(1 4 2v/2)a®u® + (1 4+ 2v2)u”.

We must determine the critical points of M subject to the constaint F' = 0. One way of formulating this
problem is to look for points (a,u) on F = 0 such that the restriction of the derivative of M to the tangent
line of F' =0 at (a,u) is the zero functional. Thus we compute the expression

—9F/0ou
OF /0a

)

dM /da aM/au]

determine its fators, and observe that the above expression vanishes precisely at the zero set of the polyno-
mial
H(a,u) := — 8192a5 4 6(4 + v2)a'%u — 1024(68 — 15a*)a’u? — 2[60 + (15 + 8a)v/2]
aSud 4 =38 + (2 — a®)V2Jull.

So the degenerate relative equilibria are the points of intersection of the algebraic curves H =0 and F =0
which satisfy ¢ > 0 and u > 2V/2.

Proposition 3.5. The curves F =0 and H = 0 intersect at a unique point in the quadrant {a > 0} x {u >

2v/2}.
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Proof. We apply a classical argument using resultants of polynomials.
The resultant of F' and H with respect to the variable a is 8 - R(u), where

R(u) = 2305843009213693952 + - - - + 720(183 — 4v/2)u*" — 9(247 — 4v/2)u*?
is a polynomial of degree 42. The translation u — u + 3.5 produces a polynomial

R| (3.5,00) =3(118114773819483400795053945724191659 — 2660366659588799199080

3574930712500v/2) + - - - 4 39582418599936(—247 + 4v/2)u*?,

which has a single variation of signs. Thus R has a single root at some u > 3.5. We compute the polynomial
R}(3.7 4 and find that it has one variation of signs, so this root is actually greater than 2v/2 + v/2 ~ 3.6955,

which forces a > 2v/2 — v/2 &~ 1.53073. However,

— 9 10
HI\ s o0y xarg =70 - 10°(1727116708 — 250980463V/2) + -+ + 7104 - 10'°(4 + V'2)

a10u11

is a polynomial whose coefficients are all positive. Thus the only root of R greater than 21/2 -+ /2 does not
extend to a common zero (a,u) of H and F corresponding to = > 0.
Next we analyze the restriction of R to the interval 2v/2 < u < 3.5. The polynomial

R|(2\/§ 3.5] =3(118114773819483400795053945724191659 — 26603666595887991990

803574930712500v/2) + - - - — 36028797018963968(15201472938466873
359987709085415 — 10748957064184227329976893460404v/2)u?* — ...
— 2361183241434822606848(—12229302761068673824717 + 86550165
72253186170668v/2)u®” + - - - + 356526731314189519170947776512
(89 + 36v/2)ut?

has exactly two variations of signs. Hence R has either zero or two roots in the interval (2\/5, 3.5] of the
u-axis. The latter turns out to be the case.
We compute the polynomial R| (3,3.03] and verify that it has a single variation of signs. Thus R vanishes

at one point in the interval 3 < u < 3.03. For u in the latter interval, we have 0 < a < 2v/2 — /2. So we
examine the curves F' = 0 and H = 0 in the rectangle (0,1.6] x (3,3.03] D (0,2v/2 — v/2] x (3,3.03] of the
au-plane. The polynomial

F| 1 161 (3.3.05 = 2134876 + 1782920a + 114325a” + - - + 50000(44 + 40a + 5a°)u”

has no variations of signs, while

H (0,1]%(3,3.03] =15328256578353151611862267672 — 11745819698906625429772466

541v/2 — - — 13122 - 10?2(846 + 81v/2)a'u'!

has all of its coefficients negative. Therefore the root of R in 3 < u < 3.03 does not extend to an intersection
point of F' =0 and H = 0 such that x > 0.
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Finally we look at the remaining root u, of R in the interval (2ﬂ,3.5]. The polynomial R (3.04,3.06]
has a single variation of signs, hence 3.04 < u, < 3.06, and 0 < a < 1.6. However, the coefficients of the
polynomials

— 2 2,2
F g 001x(3.013.00 = — 277471 — 2727200 — 1363600a° — - -- — 1241600a,

— 2 2,2
116y (5.01.3.00 —258889 + 1992768a + 2069104a” + - - + 2113024a”u

are all negative and all positive, respectively. Thus the possible (real) intersection points (ap, up) of F =0
and H = 0 necessarily satisfy 0.9 < a, < 1.1, and also 3.04 < up < 3.06, as we have just asserted. In the
next paragraph we prove that such (ap, up) exists and is unique.

The resultant of F' and H with respect to u can be expressed as —32 - S(a), where

S(a) = 81064793292668928(55 — 4v/2) + - - - + 1536(1 + 2v/2)a*" + 9(9 + 4v/2)a*.
We compute

S‘ 9(13575400623054711578786014311570545284242707386878572603329
— 3433287277117546887544014043317132159762099521091303262236
\/5) + -+ 9(563458115104322845762189274616317872868679600278
6082698311 + 624023894348285348083972509153411564059082642860

6164733756/2)a*?

0.9,1.1 —

and verify that S ‘(0_9 1.1] has one variation of signs. Thus F = 0 and H = 0 intersect at points whose
a-coordinate is unique and lies on the interval 0.9 < a < 1.1. From our previous discussion, the u-coordinate
of the points of intersection, if real, is unique and belongs to the interval 3.04 < u < 3.06. Thus the possible
intersection point (ap, up) is unique. To prove that an intersection at (ap, up) actually occurs, we claim that
in the rectangle (0.9,1.1] x (3.04, 3.06] the curves F' = 0 and H = 0 are graphs which intersect at least once.
Indeed, on one hand we have
_ 2
F|(0'9,1'1]X(3.04,3'06] =258889 + 603152u + 343984u~ — 2(36109 — 19888u — 55696
u?)a — (277471 + 457328u + 180176u?)a?,

so, for each u > 0 fixed, the above polynomial has a single variation of signs. On the other hand,

HY (0.0 1% (3.01.3.06 = 16(116311541062214746426419200000 — 454060380157873209

81179923599v/2) + - - - — 1536(101250397213744566832262500
+ 352913444048287352143856729+v/2)a 'O ut!

is a polynomial which can be written in the form Z;io hi(u)a® where each h; is a nonzero polynomial of
degree 14 whose coefficients are all positive if ¢ < 6 and all negative if ¢ > 6. Thus the restrictions of F' =0
and H = 0 to (0.9,1.1] x (3.04,3.06] are graphs of functions ar(u) and ag(u), respectively. Using Mobius
transformations, we verify at once that ar(0) < ag(0) and ap(1) > ag (1), hence F' = 0 and H = 0 must
intersect at least once in (0.9, 1.1] x (3.04,3.06]. O

Through suitable M6bius transformations, we obtain the approximate values of a and u at the intersection
of the curves F' =0 and H = 0, namely
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Fig. 3. A relative equilibrium formed by a centered square plus a body of infinitesimal mass on one of its diagonals.

ap ~ 0.999963, up ~ 3.055029.

These values give x ~ 0.763729, from the second equation in (3.6), and M (ap,up) =~ 0.187457, using
equation (3.10).
The above result completes our study of bifurcations and the proof of Theorem 3.1.

3.2. Relative equilibria on the diagonals
For the sake of completeness, we now consider the relative equilibria at points on one of the diagonals of

the centered square, see Fig. 3.
The single relative equilibrium equation is

r—1 z+1 x x
o = : LS Rty 3.11
TP i MEp e (3.11)
where
1 1
A=m+ —+ r? =2+ 1.

VoS

As in the previous subsection, without loss of generality, from now on it will be assumed that x > 0, since
the case £ < 0 can be obtained by symmetry. The values x = 0, co will be included in our analysis. We solve
equation (3.11) for m, thus obtaining

= R R R CE) S N

Our goal is this subsection is to prove the theorem below.

Theorem 3.6. On the semi-diagonals (including the points at 0 and oo) of the centered square relative
equilibrium with central mass m € R, the possible numbers N of classes of relative equilibria of the planar
restricted (5 + 1)-body problem are as follows:

(1) If—oo<m<—%—i, we have N = 0.
(11) [ff%f%§m<0, then N' = 1.
(IIT) If m >0, then N = 2.
1

In item (II), the degenerate relative equilibrium associated with m = — 5 1 is & = oco. In item (III), the

degenerate relative equilibrium associated with m =0 is x = 0, the center of the square.

Proof. The assertions on degenerate relative equilibria follow from the asymptotic developments of (3.12)
at x = 0 and x = oo, namely
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2L

Fig. 4. The graph of m as a function of z > 0 along one of the diagonals of the square.

9 1 1 1 _
m:<1+ﬁ)$3+0((1}5), m:—ﬁ—z‘i‘O(fE 3).

The remaining claims in the statement of the theorem are direct consequences of the next proposition. O

Proposition 3.7. Let m(x) be the expression on the right-hand side of equation (3.12), x > 0. As x increases
from 0 to 1, m(x) increases from 0 to oo, and as x increases from 1 to oo, m(x) decreases from oo to
—1/+/2—1/4. The vertical line x = 1 and the horizontal line m = —1/v/2—1/4 are asymptotes of the graph
of m(x).

Proof. For 0 < z < 1, simple manipulations transform equation (3.12) into

miw) = (12_36;) Hu - 7 %] " (2—\1/5 ! é>}

By comparing the growth of the numerators and denominators of the rational functions as  grows from 0 to

1, we realize that the above expression is the product of two increasing functions on the interval 0 < z < 1.
We also see that m(0) = 0 and lim,_,;- m(x) = oco.
If 2 > 1, equation (3.12) can be written as

o= (1) Pl 7l - (7))

x2_11+1 x2+1_1+2
-1 = x—1)" (x2—-1)2 221 (22 —1)2’

We have that

and, using the identity 72 = 1 + 22, we compute

1
<0 & :172>§.

i(ﬁ),l_%Q
de \r3) o5

Thus m(x) is a decreasing function if z > 1. Cleraly lim,_,1+ m(z) = oo and lim, oo m(z) = —1/4 —

1/v2. O

Fig. 4 displays the main features of the graph of m = m(z) as stated in the last proposition.
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