期刊论文详细信息
Symmetry Integrability and Geometry-Methods and Applications | |
Continuous Choreographies as Limiting Solutions of $N$-body Type Problems with Weak Interaction | |
article | |
Reynaldo Castaneira1  Pablo Padilla1  Héctor Sánchez-Morgado2  | |
[1] Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas;Instituto de Matemáticas | |
关键词: N-body problem; continuous coreography; Lagrangian action; | |
DOI : 10.3842/SIGMA.2016.104 | |
来源: National Academy of Science of Ukraine | |
【 摘 要 】
We consider the limit $N\to +\infty$ of $N$-body type problems with weak interaction, equal masses and $-\sigma$-homogeneous potential, $0$<$\sigma$<$1$. We obtain the integro-differential equation that the motions must satisfy, with limit choreographic solutions corresponding to travelling waves of this equation. Such equation is the Euler-Lagrange equation of a corresponding limiting action functional. Our main result is that the circle is the absolute minimizer of the action functional among zero mean (travelling wave) loops of class $H^1$.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202106300001077ZK.pdf | 316KB | download |