期刊论文详细信息
JOURNAL OF PURE AND APPLIED ALGEBRA 卷:225
On certain linearized polynomials with high degree and kernel of small dimension
Article
Polverino, Olga1  Zini, Giovanni1  Zullo, Ferdinando1 
[1] Univ Campania Luigi Vanvitelli, Dipartimento Matemat & Fis, Viale Lincoln 5, I-81100 Caserta, Italy
关键词: Linearized polynomial;    Algebraic curve;    Linear set;    MRD code;    Hasse-Weil bound;   
DOI  :  10.1016/j.jpaa.2020.106491
来源: Elsevier
PDF
【 摘 要 】

Let f be the F-q-linear map over F-q(2n) defined by x bar right arrow x ax(q)(s) + bx(qn+s) with gcd(n, s) = 1. It is known that the kernel of f has dimension at most 2, as proved by Csajbok et al. in [9]. For n big enough, e.g. n >= 5 when s = 1, we classify the values of b/a such that the kernel of f has dimension at most 1. To this aim, we translate the problem into the study of some algebraic curves of small degree with respect to the degree of f; this allows to use intersection theory and function field theory together with the Hasse-Weil bound. Our result implies a non-scatteredness result for certain high degree scattered binomials, and the asymptotic classification of a family of rank metric codes. (C) 2020 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jpaa_2020_106491.pdf 431KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次