期刊论文详细信息
JOURNAL OF COMBINATORIAL THEORY SERIES A 卷:179
On the classification of exceptional scattered polynomials
Article
Bartoli, Daniele1  Montanucci, Maria2 
[1] Univ Perugia, Dipartimento Matemat & Informat, Perugia, Italy
[2] Tech Univ Denmark, Dept Appl Math & Comp Sci, Asmussens Alle,Bldg 303B, DK-2800 Lyngby, Denmark
关键词: Maximum scattered linear set;    MRD code;    Algebraic curve;    Hasse-Weil bound;   
DOI  :  10.1016/j.jcta.2020.105386
来源: Elsevier
PDF
【 摘 要 】

Let f(X) is an element of F-qr[X] be a q-polynomial. If the F-q-subspace U = {(x(qt), f(x)) vertical bar x is an element of F-qn} defines a maximum scattered linear set, then we call f(X) a scattered polynomial of index t. The asymptotic behavior of scattered polynomials of index t is an interesting open problem. In this sense, exceptional scattered polynomials of index tare those for which U is a maximum scattered linear set in PG(1, q(mr)) for infinitely many m. The classifications of exceptional scattered monic polynomials of index 0(for q > 5) and of index 1 were obtained in [1]. In this paper we complete the classifications of exceptional scattered monic polynomials of index 0 for q <= 4. Also, some partial classifications are obtained for arbitrary t. As a consequence, the classification of exceptional scattered monic polynomials of index 2 is given. (C) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcta_2020_105386.pdf 510KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次