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1. Introduction

Let q be a prime power and r, n ∈ N. Let V be a vector space of dimension r over Fqn . 
For any k-dimensional Fq-vector subspace U of V , the set L(U) defined by the nonzero 
vectors of U is called an Fq-linear set of Λ = PG(V, qn) of rank k, i.e.

L(U) = {〈u〉Fqn
: u ∈ U \ {0}}.

It is notable that the same linear set can be defined by different vector subspaces. Con-
sequently, we always consider a linear set and the vector subspace defining it in pair.

Let Ω = PG(W, Fqn) be a subspace of Λ and L(U) an Fq-linear set of Λ. We say that 
Ω has weight i in L(U) if dimFq

(W ∩ U) = i. Thus a point of Λ belongs to L(U) if and 
only if it has weight at least 1. Moreover, for any Fq-linear set L(U) of rank k,

|L(U)| ≤ qk − 1
q − 1 .

When the equality holds, i.e. all the points of L(U) have weight 1, we call L(U) a scattered
linear set. A scattered Fq-linear set of highest possible rank is called a maximum scattered
Fq-linear set. See [6] for the possible ranks of maximum scattered linear sets.

Maximum scattered linear sets have various applications in Galois geometry, including 
blocking sets [2,30,32], two-intersection sets [6,7], finite semifields [8,17,31,36], translation 
caps [5], translation hyperovals [16], etc. For more applications and related topics, see 
[27] and the references therein. For recent surveys on linear sets and particularly on the 
theory of scattered spaces, see [28,38].

In this paper, we are interested in maximum scattered linear sets in PG(1, qn). Let f
be an Fq-linear function over Fqn and

U = {(x, f(x)) : x ∈ Fqn}. (1.1)

Clearly U is an n-dimensional Fq-subspace of Fqn and f can be written as a q-polynomial 
f(X) =

∑
AiX

qi ∈ Fqn [X]. A necessary and sufficient condition for L(U) to define a 
maximum scattered linear set in PG(1, qn) is

f(x)
x

= f(y)
y

if and only if y

x
∈ Fq, for x, y ∈ F∗

qn . (1.2)

In [41], such a q-polynomial is called a scattered polynomial.
Two linear sets L(U) and L(U ′) in PG(1, qn) are equivalent if there exists an element 

of PΓL(2, qn) mapping L(U) to L(U ′). It is obvious that if U and U ′ are equivalent as 
Fqn-spaces, then L(U) and L(U ′) are equivalent. However, the converse is not true in 
general. For recent results on the equivalence issue and the classification of linear sets, 
we refer to [12,14,15].
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There is a very interesting link between maximum scattered linear sets and the so 
called maximum rank distance (MRD for short) codes [14].

Given a scattered polynomial f over Fqn , an MRD code (see [41]) can be defined by 
the following set of Fq-linear maps

Cf := {aX + bf(X) : a, b ∈ Fqn}. (1.3)

In particular, a scattered polynomial over Fqn defines an MRD code in Fn×n
q of minimum 

distance n − 1. To show that (1.3) defines an MRD code, we only have to prove that 
aX+bf(X) has at most q roots for each a, b ∈ Fqn with (a, b) �= (0, 0), which is equivalent 
to (1.2). For more details on MRD codes we refer to [1,35,37,12,41,6,34,33,13].

To the best of our knowledge, up to the equivalence of the associated MRD codes, 
almost all constructions of scattered polynomials for arbitrary n can be summarized as 
one family

f(X) = δXqs + Xqn−s

, (1.4)

where s satisfies gcd(s, n) = 1 and NormFqn/Fq
(δ) = δ(qn−1)/(q−1) �= 1.

Besides the family of scattered polynomials defined in (1.4), very recently, Csajbók, 
Marino, Polverino and Zanella found another new family of scattered polynomials of 
index 0 of the form

f(X) = δXqs + Xqn/2+s

, (1.5)

for n = 6, 8 and some δ ∈ F∗
qn ; see [13].

Remark 1.1. Due to the classification of exceptional scattered polynomials of index 0 in 
[1], the above family is not exceptional.

As scattered polynomials appear to be very rare, it is natural to look for some classi-
fications of them. Given an integer 0 ≤ t ≤ n −1 and a q-polynomial f whose coefficients 
are in Fqn , if

Um = {(xqt , f(x)) : x ∈ Fqmn} (1.6)

defines a maximum scattered linear set in PG(1, qmn) for infinitely many m, then we 
call f an exceptional scattered polynomial of index t. In particular, if U1 is maximum 
scattered, then we say f is a scattered polynomial over Fqn of index t.

Note that (1.6) is slightly different from (1.1): in this way we can describe the unique 
known family (1.4) as an exceptional one. Taking t = s, from (1.4) we get

{(xqs , x + δxq2s
) : x ∈ Fqmn}
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which defines a maximum scattered linear set for all mn satisfying gcd(mn, s) = 1. This 
means X + δXq2s is an exceptional scattered polynomial of index s.

Remark 1.2. Clearly the two formulas (1.6) and (1.1) describe equivalent objects: they 
are obtained just applying a Frobenius to each component. On the other hand, looking 
only at (1.1) does not give the whole information about one can expect an exceptional 
polynomial is. In fact, if one excludes the possibility of having general t’s in formula 
(1.1), the unique non-monomial example of exceptional scattered polynomial cannot be 
obtained. The reason is that some of the exponents in f(x) could depend on n (i.e. the 
size of the field Fqn) and therefore the “shape” of the polynomial f(x) varies according to 
the field and therefore (by definition) cannot be exceptional. This happens for instance 
to the case (x, δxqs + xqn−s), which is morally speaking exceptional but does not fit 
the definition of being exceptional. The equivalent set (xqs , δxq2s + x) is now described 
formally via the exceptional scattered polynomial of index s, g(x) = δxq2s + x.

Assume that Um given by (1.6) defines a maximum scattered linear set for some m. 
Now, we want to normalize our research objects to exclude some obvious cases.

[C1] Without loss of generality, we assume that the coefficient of Xqt in f(X) is always 
0. In fact f(x)/xqt = f(y)/yqt if and only if

f(x) − αxqt

xqt
= f(x)

xqt
− α = f(y)

yqt
− α = f(y) − αyq

t

yqt

for any α ∈ F∗
qn .

[C2] When t > 0, we assume that the coefficient of X in f(X) =
∑

AiX
qi ∈ Fqn [X] is 

nonzero; otherwise let t0 = min{i : Ai �= 0} and it is equivalent to consider{(
xqt−t0

,
n−1∑
i=t0

Aqn−t0

i xqi−t0

)
: x ∈ Fqmn

}

instead of Um.
[C3] We assume that f(X) is monic. To see this, it is enough to observe that f(x)/xqt =

f(y)/yqt if and only if αf(x)/xqt = αf(y)/yqt , for any α ∈ F∗
qn .

The main results in [1] can be summarized as follows.

Theorem 1.3 ([1]).

(1) For q > 5, Xqk is the unique exceptional scattered monic polynomial of index 0.
(2) The only exceptional scattered monic polynomials f of index 1 over Fqn are X and 

bX + Xq2 where b ∈ Fqn satisfying Normqn/q(b) �= 1. In particular, when q = 2, 
f(X) must be X.
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In this paper we close the gaps left for q ≤ 4 in the above classification of index 
0 exceptional scattered polynomials, proving that Theorem 1.3 (1) holds also in these 
cases. We also obtain partial results for exceptional scattered polynomials of index larger 
than 1. More precisely, the following is the main result of the paper.

Theorem 1.4. Let t ≥ 2 be a natural number, f(X) =
∑M

i=0 AiX
qki ∈ Fqr [X] where 

AM = 1, k0 = 0, and either

• k1 = 1, ki ≥ t for i ≥ 2 and kM ≥ t + 2, or
• k1 > t.

If either kM ≥ 3t and t | kM , or kM ≥ 2t − 1 and t � kM then f(X) is not an exceptional 
scattered polynomial of index t.

Since for t = 2 only Condition i) in Theorem 1.4 can occur, the classification of 
exceptional scattered polynomials of index 2 is obtained.

Corollary 1.5. Let f(X) ∈ Fqr [X] be a monic q-linearized polynomial, q odd. Then f(X)
is exceptional scattered of index 2 if and only if r is odd and

f(X) = X + δXq4
,

with Normqr/q(δ) �= 1.

As in [1], the main idea consists in converting the original question into an inves-
tigation of a special type of algebraic curves. Then approaches based on intersection 
theory or function field theory together with the Hasse-Weil Theorem (see for instance 
[19, Theorem 5.4.1]) are used to get contradictions.

2. An approach based on intersection multiplicity

2.1. First properties of the curve Cf associated to a scattered polynomial f

Scattered polynomials are related with algebraic curves via the following straightfor-
ward result; see also [1, Lemma 2.1].

Lemma 2.1. The vector space U = {(xqt , f(x)) : x ∈ Fqn} defines a maximum scattered 
linear set L(U) in PG(1, qn) if and only if the curve Cf defined by

f(X)Y qt − f(Y )Xqt

XqY −XY q
(2.1)

in PG(2, qn) contains no affine point (x, y) such that y /∈ Fq.
x
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In this paper we investigate on singular points of curves Cf associated with scat-
tered polynomials f(X) (see Lemma 2.1 above) to get information on the existence of 
absolutely irreducible components of Cf defined over Fq.

Hasse-Weil Theorem will be an essential tool for our purposes.

Theorem 2.2 (Hasse-Weil Theorem). Let C be an absolutely irreducible curve defined by 
F (X, Y ) = 0, with F (X, Y ) ∈ Fq[X, Y ] and deg(F (X, Y )) = d. Then the number Nq of 
Fq-rational points of C satisfies

q + 1 − (d− 1)(d− 2)√q ≤ Nq ≤ q + 1 + (d− 1)(d− 2)√q.

The existence of a suitable component in Cf together with Hasse-Weil Theorem is 
enough to prove that f(x) is not exceptional scattered of index t.

Theorem 2.3. Let f(x) ∈ Fqn [x]. Suppose that the curve Cf defined by (2.1) contains an 
absolutely irreducible component D defined over Fqn distinct from X = 0, Y = αX, with 
α ∈ Fq. Then f(x) is not exceptional scattered of index t.

Proof. Let d be the degree of D. Consider a field Fqnm for some positive integer m. 
Clearly, D is also Fqnm -rational. By Hasse-Weil Theorem there exist at least

qnm + 1 − (d− 1)(d− 2)qnm/2

Fqnm-rational points of D and at most d(q+2) of them are not affine nor belong to lines 
X = 0, Y = αX, with α ∈ Fq. Let m be such that qnm+1 −(d −1)(d −2)qnm/2−d(q+2)
is positive. Then for each m ≥ m, by Lemma 2.1 f(x) is not scattered of index t over 
Fqnm and therefore is not exceptional scattered. �

The machinery we adopt to prove that Cf contains a suitable absolutely irreducible 
component D defined over Fqn has been used in [24,25,21,22,29,43,9–11,39,40,1].

As in [1], the main tool is the use of branches and local quadratic transformations 
of a plane curve to obtain a better estimate for the intersection number of two com-
ponents of a fixed curve at one of its singular points. Recently, an approach based on 
local quadratic transformations which uses implicitly branches has been applied in [3] to 
classify exceptional planar functions in characteristic two.

Consider an algebraic curve C defined over Fq. Suppose, by way of contradiction, that 
C has no absolutely irreducible components over Fq. We divide our proof into four steps.

(1) We find all the singular points of C.
(2) We assume that C splits into two components A and B sharing no common irreducible 

component. An upper bound on the total intersection number of A and B is then 
obtained. The main ingredient here will be branch investigation using quadratic 
transformations.
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(3) Under the assumption that C has no absolutely irreducible components over 
Fq, we decompose F (X, Y ) as A(X, Y )B(X, Y ) and obtain a lower bound on 
(degA)(degB).

(4) Finally, by using Bézout’s Theorem (see Theorem 2.4), we get a contradiction be-
tween the two bounds.

We now recall basic notions about algebraic curves. Let C be a plane curve defined by 
the polynomial F (X, Y ) ∈ Fqn [X, Y ]. For a point P = (u, v) ∈ C write

F (X + u, Y + v) = F0(X,Y ) + F1(X,Y ) + F2(X,Y ) + · · · ,

where Fi(X, Y ) is either zero or homogeneous of degree i. We define the multiplicity 
mP (C) of P ∈ C as the smallest integer m such that Fm �= 0 and Fi ≡ 0 for i < m. We 
call Fm the tangent cone of C at P . If mP (C) > 0 then P belongs to C; if mP (C) = 1
then P is called a simple point of C; if mP (C) > 1 then P is called a singular point. The 
definition of multiplicity can be easily extended to points of C lying on the line infinity.

Given two plane curves A and B and a point P ∈ A ∩ B, the intersection number 
I(P, A ∩ B) of A and B at P is defined by seven axioms; see [20,23] for more details.

Theorem 2.4 (Bézout’s Theorem). Let A and B be two projective plane curves over an 
algebraically closed field K, having no components in common. Let A and B be the 
polynomials associated with A and B respectively. Then∑

P

I(P,A ∩ B) = (degA)(degB),

where the sum runs over all points in the projective plane PG(2, K).

Let Fq be the algebraic closure of Fq. Consider the set Fq[[t]] of the formal power 
series on t. Let (x0, y0) ∈ Fq

2 be an affine point of C : F (X, Y ) = 0. A branch of center 
(x0, y0) of C is a point (x(t), y(t)) ∈ (Fq[[t]])2 such that F (x(t), y(t)) = 0, where

x(t) = x0 + u1t + u2t
2 + · · · ,

y(t) = y0 + v1t + v2t
2 + · · · .

See [23, Chapter 4] for more details on branches. There exists a unique branch centered 
at a simple point of C.

Remark 2.5. In order to determine branches centered at singular points of a curve C we 
make use of quadratic transformations; see [23, Section 4] and [1, Section 2]. Consider 
a curve C defined by F (X, Y ) = Fr(X, Y ) + Fr+1(X, Y ) + · · · = 0, where each Fi(X, Y )
is homogeneous in X and Y and of degree i. First, we can suppose that the singular 
point under examination is the origin O = (0, 0) and that X = 0 is not a tangent line at 
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O. Let r be its multiplicity. The geometric transform of a curve C is the curve C′ given 
by F ′(X, Y ) = F (X, XY )/Xr. (If Y = 0 is not a tangent line at O then we can also 
consider C′ defined by F ′(X, Y ) = F (XY, Y )/Y r.) By [23, Theorem 4.44], then there 
exists a bijection between the branches of C centered at the origin and the branches of 
C′ centered at an affine point on X = 0. In our proofs we will perform chains of local 
quadratic transformations until the total number of branches is determined. In particular, 
if r is coprime with the characteristic of the ground field and the tangent cone Fr(X, Y )
at O splits into non-repeated linear factors (over the algebraic closure) distinct from X
then there are precisely r distinct branches centered at O. In fact, distinct linear factors 
of Fr(X, Y ) correspond to distinct affine points of C′ on X = 0.

The following technical results will be used to study the branches at singular points 
of the curve Cf .

Proposition 2.6. Let C be the curve defined given by F (X, Y ) = 0, where

F (X,Y ) = AXm + BY n +
∑

aijX
iY j , (2.2)

with n < m, AB �= 0, and

aij = 0 if
{

0 < i < m; or
i = 0, j ≤ n.

(2.3)

If p � gcd(n, m) then C has (n, m) branches centered at the origin.

Proof. In order to determine the number of branches centered at the origin, we follow 
Remark 2.5. If n | m then, after applying m1 = m/n − 1 times F �→ F1(X, Y ) =
F (X, XY )/Xn we can easily see that the origin is the center of n = gcd(n, m) distinct 
branches, since the tangent cone in F1(X, Y ) is AXn + BY n.

Suppose now that n � m. Let us consider �1 the smallest integer such that m1 =
m − �1n < n. We apply �1 times the local quadratic transformation F �→ F1(X, Y ) =
F (X, XY )/Xn. We have

F1(X,Y ) = AXm1 + BY n +
∑

aijX
i+�1(j−n)Y j .

By Conditions (2.3) it is readily seen that the degree of each monomial aijXi+�1(j−n)Y j

is larger than m1. Also, all the branches centered at the origin in C are still centered at 
the origin in F1(X, Y ).

Apply now k1 times the transformation G �→ G(XY, Y )/Y m1 , where k1 is the smallest 
integer such that n1 = n − k1m1 ≤ m1.

We distinguish two cases.
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(1) m1 | n. In this case F2(X, Y ) = F1(XY, Y )/Y m1 = AXm1 + BY m1 + · · · and there 
are exactly m1 = gcd(n, m) branches centered at the origin in C.

(2) m1 � n. Then

F2(X,Y ) = AXm1 + BY n1 +
∑

aijX
i+�1(j−n)Y j+(i+�1(j−n)−m1)k1 .

Note that i + �1(j − n) = 0 implies i = 0 and j = n and so aij = 0 and so no 
monomial Y α appears in F2(X, Y ) apart from BY n1 . Also i + �1(j − n) < m1 if 
and only if i + m−m1

n (j − n) < m1 which yields i + m−m1
n j < m and so i < m. 

Since aij = 0 if 0 < i < m, there is no monomial in F2(X, Y ) with degree in X
smaller than m1 apart from BY n1 . Finally, all the branches centered at the origin 
in F1(X, Y ) = 0 are centered at the origin in F2(X, Y ) = 0.

The polynomial F2(X, Y ) satisfies Conditions (2.3) and we can proceed by induction. �
Proposition 2.7. Let C be a curve of the affine equation

Y q + αXq + Xqr−qr−1+q−1Y + L(X,Y ),

where all the monomials in L(X, Y ) have degree at least qr+1 + q − 1. Then there is a 
unique branch centered at the origin.

Proof. By induction on r.
If r = 1, after applying the transformation (X, Y ) �→ (X, aX + Y ), where aq +α = 0, 

and θ(F (X, Y )) = F (X, XY )/Xq one gets

Y q + aXq−1 + Xq−1Y + L′(X,Y ),

where X | L′(X, Y ) and L′(X, Y ) contains monomials of degree at least q2 − 1. After 
applying η(F (XY, Y ))/Y q−1 one gets Y + aXq−1 + L′′(X, Y ), with Y | L′′(X, Y ), and 
therefore there is a unique branch centered at the origin.

Suppose that r > 1. One applies (X, Y ) �→ (X, aX + Y ), where aq + α = 0, and 
qr−1 − qr−2 times θ(F (X, Y )) = F (X, XY )/Xq, obtaining

Y q + aXq + Xqr−1−qr−2+q−1Y + L′(X,Y ),

with monomials in L′(X, Y ) of degree at least qr+1 − qr + qr−1 + q− 1 ≥ qr + q− 1 and 
the claim follows by the induction. �
3. Exceptional scattered polynomials of index t

In this section we investigate curves arising from index t > 0 scattered polynomials. 
We assume that Conditions [C1], [C2], [C3] hold.
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In the following it will be useful to consider the homogenized version of the starting 
linearized polynomial f(X) ∈ Fqr [X]. We denote it by the same symbol f(X, T ). Namely

f(X,T ) =
M∑
i=0

AiX
qki

T qkM −qki ∈ Fqr [X,T ],

where k0 = 0, A0 �= 0 and AM = 1.
Recall that to each polynomial f(X) is associated a curve Cf as shown in Lemma 2.1. 

In order to apply the machinery described in Section 2, we will investigate the singular 
points of the curve Df defined by f(X)Y qt − f(Y )Xqt = 0. In fact, as it can be easily 
seen, the set of its singular points contains also the singular points of Cf . A homogeneous 
equation of Df is given by F (X, Y, T ) = 0, where

F (X,Y, T ) = f(X,T )Y qt − f(Y, T )Xqt

=
M∑
i=0

Ai

(
Xqki

T qkM −qki
Y qt − Y qki

T qkM −qki
Xqt

)
. (3.1)

The are no affine singular points in Df apart from the origin. Note that the origin is, both 
in Cf and in Df , an ordinary singular point of multiplicity qt− q− 1 and qt respectively. 
The multiplicity of intersection of two putative components of Cf at such a point is 
therefore upperbounded by (qt − q − 1)2/4.

All the other singular points of Df (and therefore Cf ) are contained in the ideal line.
A singular point of Df is the point P = (1, 0, 0), while the other ideal singular points 

are of type (a, 1, 0).
In order to study such points it is useful to consider the change of variables (X, Y, T ) �→

(T, Y, X). The affine equation of the corresponding curve D̃f is given by G(X, Y ) = 0, 
where

G(X,Y ) = F (1, Y,X) =
M∑
i=0

Ai

(
XqkM −qki

Y qt − Y qki
XqkM −qki

)
. (3.2)

Apart from (0, 1, 0), (1, 0, 0) ∈ D̃f , singular points of D̃f belong to three distinct 
groups:

• Sξ = (0, ξ), with ξ ∈ Fq.
• Rξ = (0, ξ), with ξq

kM = ξq
t , ξ /∈ Fq and ξq

ki �= ξq
t for at least one i = 0, . . . , M − 1.

• Qξ = (0, ξ), with ξq
ki = ξq

t for all i = 0, . . . , M and ξ /∈ Fq.

Let ξ ∈ F∗
q� with � = GCD(t, k1 − t, . . . , kM − t) = GCD(t, k1, . . . , kM ). Note that 

G(X, Y ) = G(X, ξY ), that is ζξ : (X, Y ) �→ (X, ξY ) is automorphism of D̃f sending 
S1 to Sξ or Qξ. This means that we need only to investigate branches centered at 



D. Bartoli, M. Montanucci / Journal of Combinatorial Theory, Series A 179 (2021) 105386 11
S1. Also G(X, Y ) = G(X, Y + 1) and therefore S0 and S1 are equivalent too. Since 
F (X, Y, T ) = F (Y, X, T ), (1, 0, 0) and (0, 1, 0) are equivalent points of D and therefore 
the corresponding points S0 and (0, 1, 0) are equivalent in D̃f . Hence we need to study 
just the singularities Sξ and Rξ of D̃f .

Remark 3.1. Note that Df and D̃f are projectively equivalent. This means that multiplic-
ities of singular points as well as the intersection multiplicities of (putative) components 
of those curves at corresponding singular points are the same. Also, for a singular point 
P of Df , its multiplicity in Df , as the intersection multiplicities of (putative) components 
of Df at P , is larger than or equal to its multiplicity as point of Cf . Therefore, any upper 
bound on the multiplicity of intersection of two components of Df can be applied to Cf
as well. This motivates the statements of the lemmas below.

3.1. Study of the intersection multiplicities of branches at the singular points of D̃f

In this subsection we consider singular points of D̃f . In particular we study branches 
centered at those points and we determine upper bounds on the multiplicity of intersec-
tion of putative components of D̃f (and therefore C) at them. First of all we consider 
singular points contained in the second group.

Lemma 3.2. Let Rξ = (0, ξ), ξ ∈ FqkM−t \ Fqt , be a singular point of D̃f . If ki ≥ t for 
each i = 1, . . . , M then there is a unique branch centered at Rξ. Thus, the multiplicity 
of intersection of two putative components of Cf in Rξ is 0.

Proof. In order to study branches centered at Rξ we consider the polynomial

H(X,Y ) = G(X,Y + ξ) = G(X,Y ) + G(X, ξ) =
M∑
i=0

AiX
qkM −qki

(
Y qt − Y qki + ηi

)

= Y qt − Y qkM + B0X
qkM −1 +

M−1∑
i=0

AiX
qkM −qki

(
Y qt − Y qki

)

+
M−1∑
i=1

BiX
qkM −qki

,

where ηi = ξq
t − ξq

ki and Bi = Aiηi. Note that, since ξ /∈ Fqt , B0 �= 0.
The point Rξ is mapped to the origin and its tangent cone in C (the homogeneous 

polynomial defined by H(X, Y ) = 0) is Y qt . In what follows we will perform a number 
of quadratic transformations.

Let M1 be the largest index such that BM1 �= 0. Note that, since Rξ belongs to the 
second group, actually such M1 exists. If M1 = 0, then all Bi = 0, i = 1, . . . , M − 1. We 
consider qkM−t − 1 times the transformation θ(H(X, Y )) = H(X, XY )/Xqt and we can 
easily see that
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H1(X,Y ) = Y qt − Y qkM + B0X
qt−1 + L(X,Y ).

The argument follows as in Step 3.1.1 and Step 3.1.2 below. Thus we consider now the 
case M1 �= 0.

Step 1. Let us consider the transformation θ(H(X, Y )) = H(X, XY )/Xqt . Let

u1 = qkM − qkM1

qt
− 1.

After u1 applications of θ, one gets

H1(X,Y ) = Y qt − Y qkM
Xu1(qkM −qt) + BM1X

qt + B0X
q
kM1 +qt−1

+
M−1∑
i=0

AiX
qkM −qki

Y qt −
M−1∑
i=0

AiX
q
kM1 +qt+(u1−1)qki

Y qki

+
M1−1∑
i=1

BiX
q
kM1 +qt−qki

. (3.3)

Step 2. Let ρ1(X, Y ) = (X, α1X +Y ) such that αqt

1 +BM1 = 0. After applying ρ1 one 
gets

H ′
1(X,Y ) = Y qt−(α1X + Y )q

kM
Xu1(qkM −qt) + B0X

q
kM1 +qt−1

+
M−1∑
i=0

Aiα
qt

1 XqkM −qki+qt

+
M−1∑
i=0

AiX
qkM −qki

Y qt −
M−1∑
i=0

AiX
q
kM1 +qt+(u1−1)qki

Y qki

−
M−1∑
i=0

Aiα
qki

1 Xq
kM1 +qt+u1q

ki +
M1−1∑
i=1

BiX
q
kM1 +qt−qki

. (3.4)

Let us order the indices ki in such that Bi �= 0 as kM1 > kM2 > kM3 > · · · > kMs
. We 

distinguish two subcases.

(1) Suppose that M2 = 0.
Step 3.1.1. In H ′

1(X, Y ), the monomials of smallest degree are Y qt and B0X
q
kM1+qt−1. 

If we apply θ exactly qkM1−t times we get

H(X,Y ) = Y qt + B0X
qt−1 + L(X,Y ),

where L is a linearized polynomial in Y with all the degrees in X larger than qt − 1. 
Also, 0 is the unique root of H(0, Y ).
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Step 3.1.2. Now perform τ(H(X, Y )) = H(XY, X)/Y qt−1: this gives

H̃(X,Y ) = Y + B0X
qt−1 + L̃(X,Y ),

where all the monomials in L̃ have degree in X larger than 1 and then 0 is the unique 
root of H̃(0, Y ). The tangent cone has degree one now and there is a unique branch 
centered at the origin in the curve defined by H̃(X, Y ) = 0 and so in C. This also 
shows that the multiplicity of intersection of two putative components of Cf in the 
corresponding point is 0.

(2) Suppose now that M2 �= 0.
First note that qkM1 + qt − qkM2 is the smallest degree of a monomial in H ′

1 apart 
from Y qt .
Step 3.2.1. Let

u2 = qkM1 − qkM2

qt
.

We apply u2 times θ and get

H2(X,Y ) = Y qt + B0X
q
kM2 +qt−1 +

M−1∑
i=0

Aiα
qt

1 XqkM −q
kM1 +q

kM2 −qki+qt

+
M−1∑
i=0

AiX
qkM −qki

Y qt −
M−1∑
i=0

AiX
q
kM2 +qt+(u1+u2−1)qki

Y qki

−
M−1∑
i=0

Aiα
qki

1 Xq
kM2 +qt+u1q

ki +
M2∑
i=1

BiX
q
kM2 +qt−qki

− (α1X + Xu2Y )q
kM

Xu1(qkM −qt)−u2q
t

.

Step 3.2.2. After ρ2(X, Y ) = (X, α2X + Y ) with αqt

2 + BM2 = 0, one gets H ′
2(X, Y )

equal to

Y qt + B0X
q
kM2 +qt−1 +

M−1∑
i=0

Aiα
qt

1 XqkM −q
kM1 +q

kM2 −qki+qt

+
M−1∑
i=0

AiX
qkM −qki (Y qt + αqt

2 Xqt)

−
M−1∑
i=0

AiX
q
kM2 +qt+(u1+u2−1)qki (Y qki + αqki

2 Xqki )

−
M−1∑
i=0

Aiα
qki

1 Xq
kM2 +qt+u1q

ki +
M2−1∑
i=1

BiX
q
kM2 +qt−qki

− (α1X + α2X
u2+1 + Xu2Y )q

kM
Xu1(qkM −qt)−u2q

t

.
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Now H ′
2 can be described as

Y qt + B0X
q
kM2 +qt−1 +

M2−1∑
i=1

BiX
q
kM2 +qt−qki + L(X,Y ),

where L(X, Y ) is a linearized polynomial in Y such that the monomials have degree 
in Y either 0 or larger than qt − 1 and in X larger than kM2 + qt − 1. Note that also 
H ′

1 can be described in this way.
Step 3.2.3. We perform

uj = qkMj−1 − qkMj

qt

times θ and ρj(X, Y ) = (X, αjX + Y ) with αqt

j + BMj
= 0 and we obtain

H ′
j(X,Y ) = Y qt + B0X

q
kMj +qt−1 +

Mj−1∑
i=1

BiX
q
kMj +qt−qki + L′(X,Y ).

At the s-th step

H ′
s(X,Y ) = Y qt + B0X

qkMs +qt−1 + L′(X,Y ).

Step 3.2.4. Note that at each step, 0 is the unique root of H ′
j(0, Y ) and therefore all 

the branches centered at the origin in C correspond to the branches centered at the 
origin in the curve defined by H ′

s(X, Y ) = 0. Another application of u = qkMs/qt

times θ gives

H(X,Y ) = Y qt + B0X
qt−1 + L(X,Y ),

where L is a linearized polynomial in Y with all the degrees in X larger than qt − 1. 
Now the assertion follows from point (1). �

We now analyze the case in which k1 = 1 and all the other ki ≥ t. Note that, using 
the same notation as in Lemma 3.2, B1 �= 0, since ξ /∈ Fq.

Lemma 3.3. Suppose 1 = k1 < t < k2 < · · · < kM , with kM ≥ t + 2. Let Rξ = (0, ξ), 
ξ ∈ FqkM−t \ Fqt , be a singular point of D̃f . Then there is a unique branch centered in 
Rξ. Thus, the multiplicity of intersection of two putative components of Cf in Rξ is 0.

Proof. We proceed as in Lemma 3.2. Now H(X, Y ) = G(X, Y + ξ) = G(X, Y ) +G(X, ξ)
reads
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Y qt − Y qkM + B0X
qkM −1 + B1X

qkM −q

+
M−1∑
i=0

AiX
qkM −qki

(
Y qt − Y qki

)
+

M−1∑
i=2

BiX
qkM −qki

,

where ηi = ξq
t − ξq

ki and Bi = Aiηi. Recall that, since ξ /∈ Fqt , B0 �= 0.
Case B2 = · · · = BM−1 = 0.
We perform u = qkM−t − 1 transformations θ(H(X, Y )) = H(X, XY )/Xqt and we 

get

H1 = Y qt +B0X
qt−1 +B1X

qt−q + Y qt
M−1∑
i=0

AiX
qkM −qki −

M∑
i=0

AiX
qt+qki (qkM−t−2)Y qki

.

Now we perform one time η(H(X, Y )) = H(XY, Y )/Y qt−q and we get

H2 = Y q + B0X
qt−1Y q−1 + B1X

qt−q +
M−1∑
i=0

AiX
qkM −qki

Y qkM −qki+q

−
M∑
i=0

AiX
qt+qki (qkM−t−2)Y q+qki (qkM−t−1).

It is readily seen that all the branches centered at the origin in H1 = 0 are mapped to 
branches centered at the origin in H2 = 0. Apply v = qt−1 − 2 times θ(H(X, Y )) =
H(X, XY )/Xq obtaining

H3 = Y q + B0X
qt−qt−1+1Y q−1 + B1X

q + L(X,Y ).

Now H4 = H3(X, α1X + Y ), where αq
1 + B1 = 0, reads

H4 = Y q + B0X
qt−qt−1+1(α1X + Y )q−1 + L2(X,α1X + Y ).

All the monomials in L(X, α1X + Y ) have degree at least qt+1 + qt − qt−1 + q − 1
(consider the case kM = t + 2 and i = 0). After w = qt−1 − qt−2 applications of 
θ(H(X, Y )) = H(X, XY )/Xq we have

H5 = Y q + B0X
q −B0α

q−2
1 Xqt−1−qt−2+q−1Y + · · ·

where the other terms have degree in X at least qt+1 + q − 1. By Proposition 2.7 there 
is a unique branch centered at the origin.

Case Bi �= 0 for some i > 1.
Let M1 = max{i > 1 : Bi �= 0}. Such M1 is well defined. We now consider steps as in 

the proof of Proposition 3.3. The main difference here is the presence of the monomial 
B1X

qkM −q. After Step 1 this monomial is mapped to B1X
q
kM1 −q and it is fixed by
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Step 2. If M2 = 0 then we use the same approach as in Case B2 = · · · = BM−1 = 0 and 
the claim follows. Suppose now M2 �= 0. We perform Step 3.2.1, Step 3.2.2, Step 3.2.3, 
and Step 3.2.4: B1X

q
kM1−q becomes B1X

qkMs−q. Now we proceed as in Case B2 = · · · =
BM−1 = 0 and the claim follows. �
Lemma 3.4. Let Rξ = (0, ξ), ξ ∈ Fqt , be a singular point of D̃f . If ki ≥ t for each 
i = 1, . . . , M then there is a unique branch centered in Rξ. Thus, the multiplicity of 
intersection of two putative components of Cf in Rξ is 0.

Proof. We proceed as in Lemma 3.4. The difference here is that B0 = 0. Also, let

j = max{i = 1, . . . ,M − 1 : Bi �= 0}.

Note that Bj is well defined. So

H(X,Y ) = G(X,Y + ξ) = G(X,Y ) + G(X, ξ) =
M∑
i=0

AiX
qkM −qki

(
Y qt − Y qki + ηi

)

= Y qt − Y qkM +
M−1∑
i=0

AiX
qkM −qki

(
Y qt − Y qki

)
+ BjX

qkM −qkj

+
j−1∑
i=1

BiX
qkM −qki

, (3.5)

where ηi = ξq
t − ξq

ki and Bi = Aiηi.
We apply u1 = qkM −qkj

qt −1 times the transformation F (X, Y ) �→ F (X, XY )/Xqt and 
then

H1(X,Y ) = Y qt − Y qkM
Xu1(qkM −qt) + BjX

qt +
M−1∑
i=0

AiX
qkM −qki

Y qt

+ A0X
qkj+qt+qkM−t−qkj−t−2Y −

M−1∑
i=1

AiX
qkj+qt+(u1−1)qki

Y qki

+
j−1∑
i=1

BiX
qkj+qt−qki

. (3.6)

Let ρ1(X, Y ) = (X, α1X + Y ) such that αqt

1 + Bj = 0. After applying ρ1 one gets

H ′
1(X,Y ) = Y qt +

j−1∑
i=1

BiX
qkj+qt−qki + A0X

qkj+qt+qkM−t−qkj−t−1 (3.7)

+ A0X
qkj+qt+qkM−t−qkj−t−2Y + L(X,Y ),
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where L(X, Y ) is a polynomial containing only terms of degree in X larger than qkj +
qt + qkM−t − qkj−t − 1. Note that qt | (qkj + qt − qki). Suppose that the indices i such 
that Bi �= 0 are ordered as

i1 < i2 < · · · < is = j.

We continue performing each time

qki� − qki�−1

qt

times F (X, Y ) �→ F (X, XY )/Xqt and ρ1(X, Y ) = (X, α1X + Y ). Doing so, in a similar 
way as in Lemma 3.2 we obtain

H̃(X,Y ) = Y qt + A0X
β + · · ·

where (β, qt) = 1. We now apply Proposition 2.6 and we deduce that there is a unique 
branch centered at the origin. �

This completes the analysis of the points Rξ for ki ≥ t, i = 1, . . . , M . The following 
proposition will be used to study the point S1.

Lemma 3.5. Suppose 1 = k1 < t < k2 < · · · < kM , with kM ≥ t + 2. Let Rξ = (0, ξ), 
ξ ∈ Fqt \Fq, be a singular point of D̃f . Then there is a unique branch centered in it. Thus, 
the multiplicity of intersection of two putative components of Cf in the corresponding 
point is 0.

Proof. Recall that since ξ /∈ Fq, B1 �= 0. The proof is the same as the one in Lemma 3.3, 
since B0 = 0 does not affect the computations. �

The following lemma deals with the points Sξ (and therefore with the points Qξ). 
Here we do not assume that ki > t for i > 0.

Lemma 3.6. Let S1 = (0, 1) ∈ D̃f and kM ≥ t.

• If t | kM then there are qt branches centered at S1.
• If kM = tr + s, with s ∈ {1, . . . , t − 1} then there are q(s,t) branches centered at S1.

The maximum possible intersection multiplicity of two components of D̃f at S1 is q
kM+t

4 .

Proof. Following the same notations as in Lemma 3.2,

H(X,Y ) = Y qt − Y qkM + Y qt
M−1∑

AiX
qkM −qki −

M−1∑
AiX

qkM −qki
Y qki

.

i=0 i=0
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We distinguish two cases.

• t | kM . We perform (qkM − 1)/(qt − 1) − 1 times θ and we get

H̃(X,Y ) = Y qt −A0Y Xqt−1 + · · · .

Hence there are qt branches at the qt-singular point S1. All the branches centered at 
the origin in C : H(X, Y ) = 0 are

Zi = (t, ηitα + δ) ,

where α = (qkM − 1)/(qt − 1), ηi ∈ F∗
qkM−t , and degt(δ) > α. Suppose now that 

the curve C splits into two components X and Y sharing no common irreducible 
component. It follows that X and Y have no branches in common. Let U(X, Y ) and 
V (X, Y ) be two polynomials defining the components X and Y such that U and V
have no common factors. Then

U(X,Y ) = Y m + U0(X,Y ), and V (X,Y ) = Y qt−m + V0(X,Y ),

where 0 ≤ m ≤ qt, deg(U0) > m and deg(V0) > qt −m.
Our aim is to compute the intersection multiplicity of X and Y at the origin. For a 
branch Zi contained in X it follows that the coefficient of the term degree mα (in t) 
in U(Zi) vanishes, that is,

ηmi +
m∑
r=0

γrη
m−r
i = 0,

where the monomials γrXrαY m−r belong to U(X, Y ). Analogously, if a branch Zj

belongs to Y then

ηq
t−m

i +
qt−m∑
r=0

γ̄rη
qt−m−r
i = 0,

where the monomials γrX
rαY qt−m−r belong to V (X, Y ), since the coefficient of the 

term degree (qt−m)α (in t) in V (Zj) vanishes. Therefore, since ηi, ηj �= 0, and there 
are exactly qt−1 branches corresponding to distinct ηi, exactly m of them belong to 
X and qt −m to Y. Hence if Zi belongs to X , then Zi does not belong to Y. So the 
multiplicity of intersection at the origin of two putative components of C is given by

(qt −m)mβ ≤ q2t
qkM−t = qkM+t

.
4 4
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• t � kM . Let kM = tr + s, with s ∈ {1, . . . , t − 1}. We perform qs(qkM−s − 1)/(qt − 1)
times θ and we get

H̃(X,Y ) = Y qt −A0Y Xqs−1 + XqtY qtL(X,Y ) · · · ,

for some L(X, Y ). Apart from the branch with tangent line Y = 0, the other branches 
centered at the origin correspond to the branches centered at the origin for

Y qt−1 −A0X
qs−1 + XqtY qt−1L(X,Y ) · · · = 0.

By Proposition 2.6 there are other q(s,t) − 1 branches. All the branches centered at 
the origin in C : H(X, Y ) = 0 are

Zi =
(
tα, ηit

β + δ
)
,

where α = (qt−1)/(q(t,s)−1), β = (qkM −1)/(q(t,s)−1), ηi ∈ F∗
q(s,t) , and degt(δ) > β. 

Suppose now that the curve C splits into two components X and Y sharing no com-
mon irreducible component. It follows that X and Y have no branches in common. 
Let U(X, Y ) and V (X, Y ) be two polynomials defining the components X and Y
such that U and V have no common factors. Then

U(X,Y ) = Y m + U0(X,Y ), and V (X,Y ) = Y qt−m + V0(X,Y ),

where 0 ≤ m ≤ qt, deg(U0) > m and deg(V0) > qt −m.
Our aim is to compute the intersection multiplicity of X and Y at the origin. For a 
branch Zi contained in X it follows that the coefficient of the term degree mβ (in t) 
in U(Zi) vanishes, that is,

ηmi +
�m/α�∑
r=0

γrη
m−rα
i = η

m−r�m/α�
i

�m/α�∑
r=0

γ�m/α�−rη
rα
i

= η
m−r�m/α�
i

�m/α�∑
r=0

γ�m/α�−r (ηαi )r = 0,

where the monomials γrXrβY m−rα belong to U(X, Y ). Analogously, if a branch Zj

belongs to Y then

η
qt−m−r�(qt−m)/α�
j

�(qt−m)/α�∑
r=0

γ�(qt−m)/α�−r

(
ηαj

)r = 0,

where the monomials γrX
rβY qt−m−rα belong to V (X, Y ), since the coefficient of the 

term degree (qt−m)β (in t) in V (Zj) vanishes. Therefore, since ηi, ηj �= 0, and there 
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are exactly q(s,t)−1 branches corresponding to distinct ηi, exactly 
m/α� of them 
belong to X and 
(qt −m)/α� to Y. In particular, noting that Xα is a permutation 
of Fq(s,t) , Zi belongs to X if and only if

G(ηi) =
�m/α�∑
r=0

γ�m/α�−rη
r
i = 0

and to Y if and only if

G(ηi) =
�(qt−m)/α�∑

r=0
γ�(qt−m)/α�−rη

r
i = 0.

Suppose now that Zi belongs to X , then G(ηi) �= 0 and the coefficient of the term 
in t of degree (qt −m)β in V (Zi) does not vanish. So the multiplicity of intersection 
at the origin of two putative components of C is given by

(qt −m)
⌊m
α

⌋
β ≤ q2t

4 qkM−t = qkM+t

4 . �
4. Proof of Theorem 1.4

Now we are in a position to prove our main result Theorem 1.4.

Proposition 4.1. Let t ≥ 2 be a natural number, f(X) =
∑M

i=0 AiX
qki ∈ Fqr [X] where 

AM = 1, k0 = 0, and either

• k1 = 1, ki ≥ t for i ≥ 2 and kM ≥ t + 2, or
• k1 > t.

Let Cf be the algebraic curve associated with f as in Lemma 2.1. If t | kM and kM ≥ 3t
or t � kM and kM ≥ 2t − 1 then Cf has an absolutely irreducible component defined over 
Fqr . In particular, f(X) is not exceptional scattered.

Proof. Assume that F̃ (X, Y ) = W1(X, Y ) . . .Wk(X, Y ) is the decomposition of F̃ (X, Y )
over Fqr with deg(Wi) = di and 

∑k
i=1 di = qkM +qt−q−1 = deg(F̃ (X, Y )) and suppose 

by contradiction that Cf has no absolutely irreducible components defined over Fqr . From 
[21, Lemma 10] (see also [26, Lemma 3.1]), there exist natural numbers si such that Wi

splits into si absolutely irreducible factors over F̄qr each of degree di/si. Since Cf has 
no absolutely irreducible factors defined over Fqr , si > 0 for i = 1, . . . , k. Consider the 
polynomials

A(X,Y ) =
k∏ �si/2�∏

Zj
i (X,Y ), B(X,Y ) =

k∏ si∏
Zj
i (X,Y ),
i=1 j=1 i=1 j=�si/2�+1
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where Z1
i (X, Y ), . . . , Zsi

i (X, Y ) are absolutely irreducible components of Wi(X, Y ). Let 
A : A(X, Y ) = 0 and B : B(X, Y ) = 0. Since the number of singular points (in the 
algebraic closure) of Cf is finite, there is no repeated factors among Zj

i (X, Y ), i =
1, . . . , k, j = 1, . . . , si, otherwise the number of singular points would be infinite. So A
and B do not share (absolutely irreducible) components. Let α and α+β be the degrees 
of A(X, Y ) and B(X, Y ) respectively. Then 2α+ β = deg(Cf ) = qkM + qt − q− 1, β ≤ α

and β ≤ (qkM + qt − q − 1)/3. Furthermore from α = (qkM + qt − q − 1 − β)/2,

deg(A) deg(B) = α(α + β) = (qkM + qt − q − 1)2 − β2

4 ≥ 2(qkM + qt − q − 1)2

9 .

By Bézout’s Theorem 2.4,

∑
T∈A∩B

I(T,A ∩ B) = deg(A) deg(B) ≥ 2(qkM + qt − q − 1)2

9 . (4.1)

Clearly intersection points of A and B are singular points of Cf . As previously ob-
served, the origin is an ordinary singular point of Cf of multiplicity qt − q − 1 and from 
Lemmas 3.2, 3.3, 3.4, and 3.5, I(Rξ, X ∩ Y) = 0. Let T ∈ I := {P, Sξ, Qξ}. From 
Lemma 3.6 I(T, A ∩ B) ≤ qkM+t/4. Note that |I| = 1 + q + (q� − q) = q� + 1, where 
� = gcd(t, k1, . . . , kM ). Hence, if t | kM then

∑
T∈A∩B

I(T,A ∩ B) ≤ (qt − q − 1)2

4 + (qt + 1)q
kM+t

4 ; (4.2)

while if t � kM then

∑
T∈A∩B

I(T,A ∩ B) ≤ (qt − q − 1)2

4 + (qt/2 + 1)q
kM+t

4 . (4.3)

Now we can combine (4.1) with (4.2) and (4.3). Assume first that t | kM so that 
kM = γt, γ ≥ 1. Then from (4.1) and (4.2) we get

(qt − q − 1)2

4 + (qt + 1)q
kM+t

4 ≥ 2(qγt + qt − q − 1)2

9 , (4.4)

which is false whenever γ ≥ 3. If t � kM then write kM = γt + s with s = 1, . . . , t − 1. 
From (4.1) and (4.3)

(qt − q − 1)2

4 + (qt/2 + 1)q
(γ+1)t+s

4 ≥ 2(qγt+s + qt − q − 1)2

9 ,

which is false whenever kM ≥ 2t − 1. This shows that Cf has an absolutely irreducible 
component defined over Fqr . The claim follows from Theorem 2.3. �
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Remark 4.2. We note that in the proof of Proposition the size of I can be strictly smaller 
that qt + 1 or qq/2 + 1, for example when � = 1. In these cases Bounds (4.2) and (4.3)
can be significantly improved.

We note that for t = 2 the hypothesis ki ≥ 2 for i ≥ 2 is trivially satisfied. Hence 
the classification of exceptional scattered polynomials of index 2 follows as a corollary 
of Proposition 4.1.

Proof of Corollary 1.5. Without loss of generality a scattered polynomial of index 2 is 
f(X) = X + αXq +

∑
j≥3 βjX

qj , for α, βj ∈ Fqr . Let qkM = deg(f(X)). By Proposi-
tion 4.1 if kM ≥ 6 is even or kM ≥ 3 is odd then f(X) is not scattered.

If kM = 3 since q is odd, f(X) is not exceptional scattered from [18, Theorem 1.2].
Hence kM = 4. From Remark 4.2, if αβ3 �= 0, the size of I is equal to q + 1 and a 

contradiction arises from (4.4).
We are left with the case f(X) = X + δXq4 . The curve Cf reads

XY q2 −Xq2
Y + δ(Xq2

Y −XY q2)q2

XqY −XY q
= 0.

If r is even, there exist points (x, y) with x/y ∈ (Fq2 \ Fq) ⊂ Fqr and therefore f(X) is 
not scattered over any extension of Fqr (and thus not exceptional scattered).

Consider now r odd and then gcd(q2 − 1, qr − 1) = q − 1. The affine equation of Cf
can be rewritten as

(Xq2
Y −XY q2

)q
2−1 = 1/δ.

Note that no points (x, y) with (xq2
y − xyq

2)q2−1 = 1/δ satisfy x = λy for some λ ∈ Fq. 
We distinguish two cases.

• Normqr/q(δ) = 1. Let η, θ ∈ Fqr be such that ηq−1 = 1/δ and θq+1 = η. Since the 
Fqr -rational curve D of the affine equation Xq2

Y − XY q2 = θ is nonsingular, it is 
absolutely irreducible. Any Fqr -rational point (x, y) ∈ D satisfies

(xq2
y − xyq

2
)q

2−1 = θq
2−1 = 1/δ

and also belongs to Cf . This shows that f(X) is not scattered over any extension of 
Fqr (and thus not exceptional scattered).

• Normqr/q(δ) �= 1. Over Fqr The curve Cf decomposes as∏
θq2−1=1/δ

(Xq2
Y −XY q2 − θ) = 0,

and each component Xq2
Y − XY q2 − θ = 0 is absolutely irreducible. Since 

Normqr/q(δ) �= 1, any θ /∈ Fqr and therefore Cf does not contain any affine Fqr -
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rational point. This means that f(X) is scattered over Fqr and any extension Fqkr

with k odd. �
5. The open cases for t = 0

In this subsection we prove that Theorem 1.3 (1) holds also for q ≤ 5, that is for 
the open cases left in [1]. Since the open cases regards binomials and trinomials in the 
following we analyze two families of binomials and trinomials in a more general setting.

In this last section, we use a quite different terminology following [42]. A place P of 
the function field F/K is the maximal ideal of some valuation ring O of F/K and every 
element t ∈ P such that P = tO is called a local parameter for P ; see [42, Definition 
1.1.8]. Every 0 �= z ∈ F/K has a unique representation z = tnu, with u ∈ O invertible 
and n ∈ Z. We define the valuation vP (z) of z at P as vP (z) := n and vP (0) := ∞.

Denote by K the algebraic closure of the finite field Fq. A curve C in some affine or 
projective space over K is said to be defined over Fq if the ideal of C is generated by 
polynomials with coefficients in Fq. Let K(C) denote the function field of C. The subfield 
Fq(C) of K(C) consists of the rational functions on C defined over Fq. The extension 
K(C) : Fq(C) is a constant field extension; see [42, Section 3.6]. In particular, (Fq-)rational 
places of Fq(C) can be viewed as the restrictions to Fq(C) of places of K(C) that are fixed 
by the Frobenius map on K(C). The center of an Fq-rational place is an Fq-rational point 
of C; conversely, if P is a simple Fq-rational point of C, then the only place centered at 
P is Fq-rational. Hasse-Weil bound in this context is the following.

Theorem 5.1. [42, Theorem 5.2.3] The number Nq of Fq-rational places of a function 
field F with constant field Fq and genus g satisfies

|Nq − (q + 1)| ≤ 2g√q.

In what follows we will make use a number of times of a particular case of [42, Corol-
lary 3.7.4].

Proposition 5.2. Consider an algebraic function field F with constant field L containing 
a primitive n-th root of unity (n > 1 and n relatively prime to the characteristic of L). 
Let u ∈ F be such that there is a place Q of F with gcd(vQ(u), n) = 1. Let F ′ = F(y)
with yn = u. Then Tn − u is the minimal polynomial of u over F and L is the constant 
field of F ′.

5.1. General binomials

Consider a curve of type Xf : F (X, Y ) = 0, where

F (X,Y ) = (Xqn + bXqm)Y qt − (Y qn + bY qm)Xqt

q q
∈ Fqk(X,Y ),
X Y −XY
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where n < m and b ∈ Fqk . Now,

F (X,XY ) = (Xqn + bXqm)XqtY qt − (XqnY qn + bXqmY qm)Xqt

Xq+1(Y − Y q)

= Xqn+qt−q−1 (1 + bXqm−qn)Y qt − (Y qn + bXqm−qnY qm)
(Y − Y q) .

We have that G(X, Y ) = F (X, XY ) = 0 if and only if (apart from X = 0)

bXqm−qn Y
qt − Y qm

Y q − Y
+ Y qt − Y qn

Y q − Y
,

that is

bXqm−qn = Y qn − Y qt

Y qt − Y qm
.

Consider U = Xqn , V = Y qmin(t,n) , therefore

bUqm−n−1 = V qn−min(t,n) − V qt−min(t,n)

V qt−min(t,n) − V qm−min(t,n) .

• Suppose t < n < m. Then

bUqm−n−1 = V qn−t − V

V − V qm−t .

• Suppose n < t ≤ m. Then

bUqm−n−1 = V − V qt−n

V qt−n − V qm−n = V − V qt−n

(V − V qm−t)qt−n .

• Suppose n < m < t. Then

bUqm−n−1 = V − V qt−n

V qt−n − V qm−n = V − V qt−n

(V qt−m − V )qm−n .

First note that only a finite number of points of the curves defined by the above 
equations are contained in lines U = αV with α ∈ Fq. Suppose that m − t �= t − n, 
that is the three integers are not in arithmetical progression. Therefore the function 
field Fqk(U, V ) defined by Ur = φ(U), for some r, in the equations above is a Kummer 
extension of the rational function field Fqk(V ). If r is coprime with p = char(Fqk) and 
there exists a place Q in Fqk(V ) with gcd(vQ(φ(V )), r) = 1, by Proposition 5.2 T r−φ(V )
is irreducible over Fqk(V ). By [4, Lemma 2.4] applied to F = Fqk(V ), f = Tn − φ(V ), 



D. Bartoli, M. Montanucci / Journal of Combinatorial Theory, Series A 179 (2021) 105386 25
z = U , the constant field of Fqk(U, V ) is Fqk . By Hasse-Weil Theorem, the number of 
Fqk -rational places Nqk of Fqk(U, V ) grows as k grows.

This means that, for k large enough, the curve Ur = φ(V ) contains Fqk -rational 
points (u0, v0) (the centers of the Fqk-rational places above) such that v0/u0 /∈ Fq and 
then Xqn + bXqm is not exceptional scattered.

5.2. Particular trinomial in characteristic 2

Now we consider the following trinomial

fk(X) = X2k−2
+ aX2k−1

+ bX2k

,

where a, b ∈ F∗
2n .

Proposition 5.3. The polynomial fk, k > 2, a, b ∈ F∗
2n , is not exceptional scattered of 

index t = 0.

Proof. Consider the curve Ck associated with fk.

Ck : (X2k−2 + aX2k−1 + bX2k)Y + (Y 2k−2 + aY 2k−1 + bY 2k)X
XY (X + Y ) = 0.

Let us consider the isomorphism (X, Y ) �→ (X, XY ). The equation of the new curve is

(X2k−2 + aX2k−1 + bX2k)XY + (X2k−2
Y 2k−2 + aX2k−1

Y 2k−1 + bX2k

Y 2k)X
X3Y (1 + Y ) = 0,

that is (dividing also by X2k−2−2)

Y 2k−2−1 + 1
Y + 1 + aX2k−1−2k−2 Y 2k−1−1 + 1

Y + 1 + bX2k−2k−2 Y 2k−1 + 1
Y + 1 = 0.

Let U = X2k−2 , then the above equation reads

bU3 + aU
Y 2k−1−1 + 1
Y 2k−1 + 1

+ Y 2k−2−1 + 1
Y 2k−1 + 1

= 0. (5.1)

The curve defined above is irreducible if and only if U − α(Y ) is not a factor of bU3 +
aU Y 2k−1−1+1

Y 2k−1+1
+ Y 2k−2−1+1

Y 2k−1+1
for any α(Y ) ∈ Fq(Y ). This is equivalent to say that there 

is no solution U = F (Y )
G(Y ) ∈ Fq(Y ) of Equation (5.1), that is no element in the rational 

function field Fq(Y ) is a root of the polynomial

ψ(T ) = bT 3 + aT
Y 2k−1−1 + 1

2k−1 + Y 2k−2−1 + 1
2k−1 .
Y + 1 Y + 1
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Suppose that there exists U ∈ Fq(Y ) root of ψ(T ).

• Suppose k even and let η be such that F∗
4 = 〈η〉. Consider Pη the place in Fq(Y )

corresponding to η. Then

vPη

(
Y 2k−1−1 + 1
Y 2k−1 + 1

)
= −1, vPη

(
Y 2k−2−1 + 1
Y 2k−1 + 1

)
= 0.

Since vPη
(U) is an integer,

3vPη
(U) �= vPη

(
Y 2k−1−1 + 1
Y 2k−1 + 1

U

)
= vPη

(U) − 1.

Recall that for any place P , vP (u1 + u2) = min{vP (u1), vP (u2)} if vP (u1) �= vP (u2). 
So,

∞ = vPη
(0) = vPη

(ψ(U)) =
{

−1, if vPη
(U) ≥ 0

3vPη
(U), if vPη

(U) < 0
,

a contradiction.
• Suppose k odd. Then all the places of Fq(Y ) corresponding to roots of Y 2k−1 + 1

are not poles of U (same argument as above). All the other places of Fq(Y ) are not 
poles of Y 2k−1−1+1

Y 2k−1+1
nor of Y 2k−2−1+1

Y 2k−1+1
and therefore they are not poles of U . This 

means that the unique pole of a root U of ψ(T ) is P∞. Arguing as above, the unique 
possibility is that vP∞(U) = 2k−2, that is G(Y ) is a constant and F (Y ) has degree 
2k−2. Thus

b(Y 2k−1 + 1)F (Y )3 + aF (Y )(Y 2k−1−1 + 1) + Y 2k−2−1 + 1 = a0Y
3·2k−2+2k−1 + · · ·

should vanish. Since a0 �= 0, a contradiction arises.

So Equation (5.1) has no solution in Fq(Y ) and so it defines an absolutely irreducible 
F2n -rational curve. Since Ck is F2-isomorphic to it, Ck is absolutely irreducible too of 
degree 2k − 2.

The claim now follows from Theorem 2.3. �
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