JOURNAL OF COMBINATORIAL THEORY SERIES A | 卷:157 |
Classes and equivalence of linear sets in PG(1, qn) | |
Article | |
Csajbok, Bence1,2  Marino, Giuseppe2  Polverino, Olga2  | |
[1] Eotvos Lorand Univ, ELTE, MTA ELTE Geometr & Algebra Combinator Res Grp, Dept Geometry, Pazmany P Stny 1-C, H-1117 Budapest, Hungary | |
[2] Univ Campania Luigi Vanvitelli, Dipartimento Matemat & Fis, Viale Lincoln 5, I-81100 Caserta, Italy | |
关键词: Linearized polynomial; Linear set; Blocking set; MRD-code; | |
DOI : 10.1016/j.jcta.2018.03.007 | |
来源: Elsevier | |
【 摘 要 】
The equivalence problem of F-q-linear sets of rank n of PG(1, q(n)) is investigated, also in terms of the associated variety, projecting configurations,]Fq-linear blocking sets of Redei type and MRD-codes. We call an F-q-linear set L-U of rank n in PG(W,F-qn) = PG(1, q(n)) simple if for any n-dimensional F-q-subspace V of W, L-v is P Gamma L(2, q(n))-equivalent to L-U only when U and V lie on the same orbit of Gamma L(2, q(n)). We prove that U = {(x,Tr q(n)/q (x)): x is an element of F-qn defines a simple]Fq-linear set for each n. We provide examples of non-simple linear sets not of pseudoregulus type for n > 4 and we prove that all F-q-linear sets of rank 4 are simple in PG(1, q(4)). (C) 2018 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jcta_2018_03_007.pdf | 544KB | download |