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Let f be the Fq-linear map over Fq2n defined by x �→ x + axqs + bxqn+s with 
gcd(n, s) = 1. It is known that the kernel of f has dimension at most 2, as proved 
by Csajbók et al. in [9]. For n big enough, e.g. n ≥ 5 when s = 1, we classify the 
values of b/a such that the kernel of f has dimension at most 1. To this aim, we 
translate the problem into the study of some algebraic curves of small degree with 
respect to the degree of f ; this allows to use intersection theory and function field 
theory together with the Hasse-Weil bound. Our result implies a non-scatteredness 
result for certain high degree scattered binomials, and the asymptotic classification 
of a family of rank metric codes.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Let q be a prime power and let m be a positive integer. A q-polynomial, or linearized polynomial, over 
Fqm is a polynomial of the form

f(x) =
t∑

i=0
aix

qi ,

where ai ∈ Fqm , t is a positive integer. If at �= 0, we say that t = degq f(x) is the q-degree of f . We denote 
by Lm,q the set of all q-polynomials over Fqm and by L̃m,q the following quotient Lm,q/(xqm − x). The 
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Fq-linear maps of Fqm can be identified with the polynomials in L̃m,q. This shows the relevance of linearized 
polynomials in the theory of finite fields and their algebraic and geometric applications. A fundamental 
problem in the theory of linearized polynomials is to characterize precisely the dimension of the kernel of 
the given polynomial in terms of its coefficients. Results in this direction are given in [7,11,15,20,22,27,28].

Let n, s be positive integers such that s < 2n, gcd(s, n) = 1. First in [9] and later in [22], the following 
polynomials are investigated

fa,b,s(x) = x + axqs + bxqs+n ∈ L̃2n,q. (1)

The following results are known from [9] and [22]:

• if Nq2n/qn(a) = Nq2n/qn(b), then dimFq
ker fa,b,s(x) ≤ 1;

• if Nq2n/qn(a) �= Nq2n/qn(b), then dimFq
ker fa,b,s(x) ≤ 2;

where Nq2n/qn(x) = x1+qn .
Our main result is Theorem 1.1 and concerns the existence, for every δ ∈ Fq2n with Nq2n/qn(δ) /∈ {0, 1}, 

of an element a ∈ Fq2n such that the kernel of fa,δa,s has dimension 2, provided that n is large enough.

Theorem 1.1. Let q be a prime power and n, s be two relatively prime positive integers. Suppose that

n ≥
{

4s + 2 if q = 3 and s > 1, or q = 2 and s > 2;
4s + 1 otherwise.

For every δ ∈ F∗
q2n with Nq2n/qn(δ) �= 1 there exists a ∈ F∗

q2n such that

dimFq
ker(fa,b,s(x)) = 2,

where b = δa.

In Remark 3.2 we show that we can always suppose n > 2s, up to considering the adjoint polynomial.
The first step in the proof of Theorem 1.1 is to manipulate the shape of fa,b,s(x) to translate the condition 

on the dimension of the kernel into the existence of Fqn-rational points in the intersection of certain Fqn-
rational hypersurfaces, which are described in Theorem 3.6. Then we prove that this intersection is described 
by means of an Fq2n-rational curve X . Using intersection theory and function field theory, the curve X is 
shown to be absolutely irreducible of genus q2s − qs − 1; Theorem 1.1 now follows by Hasse-Weil bound.

Theorem 1.1 also has applications in the theory of scattered polynomials. A polynomial f(x) ∈ L̃m,q is 
said to be scattered if

dimFq
ker(f(x) − λx) ≤ 1, for all λ ∈ Fqm .

Scattered polynomials have been introduced in [23] and they have been widely investigated, especially after 
the paper [23], where Sheekey built a bridge between scattered polynomials and rank metric codes. The 
family of linearized binomials fδ,s(x) = xqs +δxqn+s ∈ L̃2n,q with δ �= 0 contains a large number of scattered 
polynomials when n is 3 or 4, as proved in [9] and [22]. The question arises whether there exist other values 
of n, possibly infinitely many, for which fδ,s(x) is scattered. Many authors have considered the problem of 
classifying exceptional scattered polynomials f(x) ∈ L̃m,q, i.e. scattered polynomials which remain scattered 
over infinitely many extensions Fq�m of Fqm ; partial classification results have been provided by Bartoli and 
Zhou [5], Bartoli and Montanucci [3], Ferraguti and Micheli [14]. Their results rely on the fact that the order 
of Fq�m is much larger than the degree of f(x); as a matter of fact, the key role in [5,3] is played by the 
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application of the Hasse-Weil bound to a curve whose degree has the same order of magnitude as deg f(x), 
and hence is small with respect to q�m (see [5, Lemma 2.1]). The aforementioned binomial fδ,s(x) is not 
taken into account by their results, because it cannot be considered ‘exceptional’ since the degree depends 
on the field Fq2n and therefore the shape of the polynomial always changes. As a byproduct of Theorem 1.1, 
we prove in Theorem 4.1 that fδ,s(x) is not scattered when n is large enough with respect to s; for instance, 
when s = 1 it is enough to choose n ≥ 5.

Finally, in Theorem 4.5 we use Theorem 1.1 to give an asymptotic classification of the family of rank-
metric codes defined by the binomials fδ,s(x).

The paper is organized as follows. Section 2 contains preliminary results about algebraic curves and 
function fields which are used in Section 3. Section 3 is devoted to the proof of Theorem 1.1; the cases q
odd and q even are studied separately, respectively in Section 3.1 and in Section 3.2. Section 4 provides 
applications of Theorem 1.1 to scattered polynomials, linear sets and rank metric codes.

2. Preliminaries on algebraic curves

Let C be a projective, absolutely irreducible, algebraic curve over the algebraically closed field K = Fq, 
embedded in a projective space PG(r, K) with homogeneous coordinates (X1 : . . . : Xr+1) and not contained 
in the hyperplane at infinity H∞ : Xr+1 = 0. Let I(C) be the ideal of C. Denote by K(C) the field of (K-
)rational functions on C, briefly the function field of C. Clearly, K(C) is generated over K by the coordinate 
functions x1, . . . , xr with xi = Xi+I(C)

Xr+1+I(C) , and K(C) : K is a field extension of transcendence degree 1. We 
denote by P (C) the set of places of C, that is, the set of places of its function field K(C). For every P ∈ P (C)
and every nonzero z ∈ K(C), we denote by vP (z) ∈ Z the valuation of z at P ; P is said to be a zero (resp. 
a pole) of z if vP (z) > 0 (resp. vP (z) < 0).

Suppose that C is defined over Fq, i.e. I(C) is generated by polynomials over Fq. Then Fq(C) denotes the 
Fq-rational function field of C, i.e. the field of Fq-rational functions on C. The Fq-rational places of C are 
those places P ∈ P (C) which are defined over Fq; that is, Fq-rational places of C are the places of degree 
1 in Fq(C), which are exactly the restriction to Fq(C) of the places of K(C) in the constant field extension 
K(C) : Fq(C). The center of an Fq-rational place is an Fq-rational point of C; conversely, if P is a simple 
Fq-rational point of C, then the only place centered at P is Fq-rational, and may be identified with P .

Let ϕ : C′ → C be a covering of curves, i.e. a non-constant rational map from the curve C′ to the curve 
C, of degree deg(ϕ) = [K(C′) : K(C)]. We denote by ϕ also the induced map P (C′) → P (C); if ϕ is Fq-
rational, then ϕ maps Fq-rational places of C′ to Fq-rational places of C. The pull-back of ϕ is denoted by 
ϕ∗ : K(C) → K(C′). When P ∈ P (C) and P ′ ∈ P (C′) satisfy ϕ(P ′) = P , we write P ′|P and say that P ′ lies 
over P in ϕ. We denote by e(P ′|P ) the ramification index of P ′|P , that is the unique positive integer such 
that vP ′(ϕ∗(w)) = e(P ′|P ) · vP (w) for all w ∈ K(C); we have 

∑
P ′:P ′|P e(P ′|P ) = deg(ϕ). We say that P ′

is ramified over P if e(P ′|P ) > 1, and totally ramified if e(P ′|P ) = deg(ϕ); otherwise it is unramified. A 
ramified place P ′ is wildly ramified (resp. tamely ramified) if e(P ′|P ) is divisible (resp. not divisible) by p. 
We refer to [16,26] for further details on algebraic curves and function fields.

Theorem 2.1. (Hurwitz genus formula, [26, Theorem 3.4.13]) Let C, C′ be two absolutely irreducible curves 
over K = Fq and ϕ : C′ → C be a covering. For every place P of C and every place P ′ of C′ lying over P in 
ϕ, let t ∈ K(C) be a local parameter at P , t′ ∈ K(C′) be a local parameter at P ′, and ϕ∗(t) ∈ K(C′) be the 
pull-back of t with respect to ϕ. Then

2g(C′) − 2 = deg(ϕ) · (2g(C) − 2) +
∑

′ ′

vP ′

(
dϕ∗(t)
dt′

)
.

P ∈P(C )
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If P ′ is not wildly ramified, then vP ′

(
dϕ∗(t)
dt′

)
= e(P ′|P ) − 1. We now recall two important types of 

coverings. The following results are the application of [26, Corollary 3.7.4] and [26, Theorem 3.7.10] in the 
case of an algebraically closed constant field K.

Theorem 2.2. [26, Corollary 3.7.4] Let C : F (X, Y ) = 0 be an absolutely irreducible plane curve defined over 
a finite field Fq of characteristic p, and m be a positive integer with gcd(m, p) = 1. Let f(X, Y ) ∈ Fq[X, Y ]
be such that there exists an Fq-rational place Q of C at which the valuation of the rational function f(x, y)
is coprime with m, i.e. gcd(vQ(f(x, y)), m) = 1. Let C′ be the curve given by the two affine equations 
F (X, Y ) = 0 and Zm = f(X, Y ). Then the following holds.

• C′ is absolutely irreducible and defined over Fq; C′ is called a Kummer cover of C.
• The Fq-rational covering ϕ : C′ → C, (X, Y, Z) �→ (X, Y ), has degree m.
• For every place P of C and every place P ′ of C′ lying over P in ϕ, we have e(P ′|P ) = m/rP , where 

rP = gcd(vP (f(x, y)), m) > 0.
• The Hurwitz genus formula reads

g(C′) = 1 + m(g(C) − 1) + 1
2

∑
P∈P(C)

(m− rP ).

If C′ is an absolutely irreducible curve over Fq defined by the two affine equations F (X, Y ) = 0 and 
L(Z) = f(X, Y ), for some f(X, Y ), F (X, Y ) ∈ Fq[X, Y ] and some separable p-polynomial L(T ) ∈ Fq[T ], 
then C′ is said to be a generalized Artin-Schreier cover of the curve C : F (X, Y ) = 0, with generalized 
Artin-Schreier covering ϕ : C′ → C, (X, Y, Z) �→ (X, Y ).

Theorem 2.3. [26, Theorem 3.7.10] Let C : F (X, Y ) = 0 be an absolutely irreducible plane curve defined over 
a finite field Fq of characteristic p. Let L(T ) ∈ Fq[T ] be a separable p-polynomial of degree q̄ with all its 
roots in Fq. Let f(X, Y ), h(X, Y ) ∈ Fq[X, Y ] have no nontrivial factors k(X, Y ) ∈ K[X, Y ] in common, and 
be such that for every place P ∈ P (C) there exists a rational function ω on C (depending on P ) satisfying 
either vP (f(x, y)/h(x, y) − L(ω)) ≥ 0 or vP (f(x, y)/h(x, y) − L(ω)) = −m with m > 0 and p � m. Define 
mP = −1 in the former case and mP = m in the latter case. Let C′ be the space curve given by the two 
affine equations F (X, Y ) = 0 and h(X, Y ) ·L(Z) = f(X, Y ). If there exists a place Q ∈ P (C) with mQ > 0, 
then C′ is a generalized Artin-Schreier cover of C, defined over Fq.

With the above notation, the following holds for generalized Artin-Schreier curves.

• The Fq-rational covering ϕ : C′ → C, (X, Y, Z) �→ (X, Y ), has degree q̄.
• For every place P of C and every place P ′ of C′ lying over P in ϕ, e(P ′|P ) is equal either to 1 or to q̄

according to mP = −1 or mP > 0, respectively.
• The Hurwitz genus formula reads

g(C′) = q̄ · g(C) + q̄ − 1
2 ·

⎛
⎝−2 +

∑
P∈P(C)

(mP + 1)

⎞
⎠ .

We now recall the well-known Hasse-Weil bound.

Theorem 2.4. [26, Theorem 5.2.3] (Hasse-Weil bound) Let C be an absolutely irreducible curve defined over 
Fq and with genus g. Then the number Nq of Fq-rational places of C satisfies

q + 1 − 2g√q ≤ Nq ≤ q + 1 + 2g√q.
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3. Proof of Theorem 1.1

In this section we prove Theorem 1.1. First we determine necessary and sufficient conditions on a and b
for fa,b,s(x) having kernel of dimension 2; cf. Theorem 3.6. Then we investigate such conditions by means 
of algebraic-geometric tools.

The first remark shows that different choices of a, b with the same norm of b/a over Fqn provide polyno-
mials fa,b,s(x) with the same behavior.

Remark 3.1. Assume that the linearized polynomial fa,b,s(x) = x +axqs+bxqs+n ∈ Fq2n [x], with gcd(s, n) = 1
and b = δa, has kernel of dimension two. Clearly, for each λ ∈ F∗

q2n we have

dimFq
ker(λ−1fa,b,s(λx)) = 2,

where

λ−1fa,b,s(λx) = x + aλqs−1xqs + aλqs−1δλqs(qn−1)xqs+n

= fa′,b′,s(x),

with a′ = aλqs−1, δ′ = λqs(qn−1)δ and b′ = a′δ′. Note that for each element δ′ ∈ Fq2n with Nq2n/qn(δ′) =
Nq2n/qn(δ) there exists λ ∈ Fq2n such that δ′ = δλqs(qn−1). Therefore, if dimFq

ker(fa,b,s(x)) = 2, with b = δa, 
then for each δ′ ∈ Fq2n with Nq2n/qn(δ′) = Nq2n/qn(δ) there exists a′ ∈ Fq2n such that dimFq

ker(fa′,b′,s(x)) =
2, with b′ = δ′a′.

The second remark shows that we may assume s < n/2.

Remark 3.2. The adjoint of a q-polynomial f(x) =
∑n−1

i=0 aix
qi , with respect to the bilinear form 〈x, y〉 =

Trqn/q(xy), is given by

f̂(x) =
n−1∑
i=0

aq
n−i

i xqn−i

.

In particular, if f(x) is a q-polynomial of shape (1), then

fa,b,s(x) = x + axqs + bxqn+s ∈ L̃2n,q,

with gcd(s, n) = 1 and its adjoint is

f̂a,b,s(x) = x + aq
2n−s

xq2n−s

+ bq
n−s

xqn−s

.

Therefore, choosing s′ = 2n − s, a′ = aq
2n−s , b′ = bq

n−s , we get

f̂a,b,s(x) = fa′,b′,s′(x),

while choosing s′′ = n − s, a′′ = bq
n−s , b′′ = aq

2n−s , we get

f̂a,b,s(x) = fa′′,b′′,s′′(x),

i.e. f̂a,b,s(x) is of shape (1). Therefore, the family of q-polynomials we are studying is closed by the adjoint 
operation. Furthermore, we underline that by [2, Lemma 2.6], the kernels of fa,b,s and f̂a,b,s have the same 
dimension (see also [8, pages 407–408]). Thus, we can assume s < n/2.
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We now prove that the shape of δ can be chosen as ξ
qs+n−ξq

n

ξqn−ξqs
, for some ξ ∈ Fq2n \ Fqn .

Theorem 3.3. Let fa,b,s(x) ∈ Fq2n [x], with b = aδ. Then dimFq
ker(fa,b,s(x)) = 2 if and only if 

dimFq
ker(fa,b,s(x)) = 2, with

δ = ξq
s+n − ξq

n

ξqn − ξqs
, (2)

for some ξ ∈ Fq2n \ Fqn and some a ∈ Fq2n , b = δa.

Proof. Assume that dimFq
ker(fa,b,s(x)) = 2, i.e. there exist x0 ∈ F∗

q2n and y0 ∈ Fq2n \ Fq such that 
x0/y0 /∈ Fq and

xqs

0 + δxqs+n

0
x0

= yq
s

0 + δyq
s+n

0
y0

,

which may be rewritten as follows

δ(y0x
qs+n

0 − x0y
qs+n

0 ) = x0y
qs

0 − y0x
qs

0 .

If y0x
qs+n

0 − x0y
qs+n

0 were zero, then x0/y0 ∈ Fq2n ∩ Fqs+n = Fq would follow, a contradiction. Hence,

δ = x0y
qs

0 − y0x
qs

0

y0x
qs+n

0 − x0y
qs+n

0
,

and, since yo = ξx0 for some ξ ∈ Fq2n \ Fq, we have

δ = 1
−xqs+n−qs

0

ξq
s − ξ

ξqs+n − ξ
.

By Remark 3.1, dimFq
ker(fa,b,s(x)) = 2 if and only if there exists a, b as in the claim such that 

dimFq
ker(fa,b,s(x)) = 2. If ξ ∈ Fqn , then δ = −1, and hence dimFq

ker(fa,b,s(x)) ≤ 1. The claim follows. �
As a consequence of Theorem 3.3 we get the following result.

Corollary 3.4. There exist δ ∈ F∗
q2n for which dimFq

ker(fa,b,s(x)) ≤ 1, with b = δa, for each a ∈ F∗
q2n if and 

only if
∣∣∣∣∣
{

Nq2n/qn

(
ξq

n+s − ξq
n

ξqn − ξqs

)
: ξ ∈ Fq2n \ Fqn

}∣∣∣∣∣ < qn − 1.

Since ξ /∈ Fqn , we have that ξ is the root of an irreducible polynomial X2 − SX − T ∈ Fqn [X], where 
Nq2n/qn(ξ) = −T and Trq2n/qn(ξ) = S. Also, {1, ξ} is an Fqn-basis of Fq2n and so there exist A, B ∈ Fqn

such that ξqs = A + Bξ. In the next we give some relations involving A, B, S and T .

Proposition 3.5. The following holds:

1. Sqs = 2A + BS;
2. −T qs = A2 + B(AS −BT ).
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In particular, Trq2n/qn(ξqs+1) = 2BT + AS + BS2 and Trq2n/qn(ξqs+qn) = AS − 2BT .

Proof. As

ξq
s+qn = (A + Bξ)(S − ξ) = AS −BT −Aξ

and

ξ1+qn+s

= −BT + (Sqs −A−BS)ξ,

we have that

Trq2n/qn(ξq
s+qn) = AS − 2BT + (Sqs − 2A−BS)ξ.

Since Trq2n/qn(ξqs+qn) ∈ Fqn , we get the first relation. Also,

−T qs = Nq2n/qn(ξq
s

) = A2 + ABS −B2T,

i.e. the second relation. �
Let α ∈ F∗

qn with α �= 1. Then

Nq2n/qn

(
ξq

n+s − ξq
n

ξqn − ξqs

)
= ξq

n+1 + ξq
s+qn+s − (ξ1+qn+s + ξq

s+qn)
ξqn+1 + ξqs+qn+s − (ξqn+qn+s + ξqs+1)

= α,

which can be written as

(1 − α)(T + T qs) − αSqs+1 + (1 + α)(AS − 2BT ) = 0.

Hence, we have the following result.

Theorem 3.6. Let α ∈ F∗
qn with α �= 1 and s a positive integer with gcd(s, n) = 1. If there exist T, S, A, B ∈

Fqn such that

1. (1 − α)(T + T qs) − αSqs+1 + (1 + α)(AS − 2BT ) = 0;
2. X2 − SX − T ∈ Fqn [X] is irreducible over Fqn ;
3. Sqs = 2A + BS;
4. −T qs = A2 + B(AS −BT ),

then for every δ ∈ Fq2n , with Nq2n/qn(δ) = α, there exists a ∈ F∗
q2n such that dimFq

ker(fa,b,s(x)) = 2, where 
b = δa.

In the rest of this section q = ph with p prime. We will show that the existence of the parameters 
T, S, A, B ∈ Fqn satisfying the hypothesis of Theorem 3.6 is equivalent to the existence of a suitable affine 
Fqn-rational point of the algebraic plane curve with equation

{
T = ηZ2−S2

4 ,

−(Sqs − S)2 + ηZ2 + ηq
s

Z2qs − 2βη qs+1
2 Zqs+1 = 0,

where η is a nonsquare in Fqn , when q is odd, and



8 O. Polverino et al. / Journal of Pure and Applied Algebra 225 (2021) 106491
(β2 + β)S2(qs+1) + Sqs+1(T qs + T ) + S2qsT + S2T qs + T 2qs + T 2 = 0,

where β = α
α+1 , when q is even.

3.1. Proof of Theorem 1.1 for q odd

Denote S2 + 4T by Δ. By 3. and 4. of Theorem 3.6, we get

B = εΔ
qs−1

2 , A = 1
2(Sqs − εSΔ

qs−1
2 ),

where ε ∈ {1, −1}. Hence we get AS−2BT = 1
2εΔ

qs−1
2 − 1

2S
qs+1. Replacing such values in 1. of Theorem 3.6, 

we get

2(T + T qs)(1 − α) + (1 − α)Sqs+1 = ε(α + 1)Δ
qs+1

2 . (3)

Also, the irreducibility of X2 − SX − T over Fqn is equivalent to the existence of a nonsquare element η of 
Fqn and a nonzero element Z of Fqn such that Δ = ηZ2. Therefore, (3) becomes

2(T + T qs) + Sqs+1 = βη
qs+1

2 Zqs+1,

where β = εα+1
1−α . Using that T = ηZ2−S2

4 , we get the following equation:

−(Sqs − S)2 + ηZ2 + ηq
s

Z2qs − 2βη
qs+1

2 Zqs+1 = 0. (4)

Theorem 3.7. Let β ∈ Fqn \ {1, −1} and η a non-square in Fqn . The plane curve C with affine equation (4)
is absolutely irreducible and has genus g(C) = q2s − qs − 1.

Proof. Let G(Z) = ηZ2 + ηq
s

Z2qs − 2βη qs+1
2 Zqs+1 ∈ Fqn [Z], and let C1 be the plane curve with affine 

equation F1(U, Z) = 0, where F1(U, Z) = U2 −G(Z). By direct computation using the assumption β �= ±1
follows that 0 is the unique multiple root of G(Z), with multiplicity 2; the other 2qs−2 roots λ1, . . . , λ2qs−2
of G(Z) are simple. Then G(Z) is not a square in K[Z], whence F1(U, Z) is irreducible over K = Fqn , i.e. 
C1 is absolutely irreducible.

The genus of the quadratic Kummer cover C1 of the projective line is computed as follows. Let z, u be the 
coordinate functions of C1, so that the function field of C1 is K(C1) = K(z, u). The valuation of G(z) at the 
zero of z − λi in K(P 1

z ) = K(z) is 1, for every i = 1, . . . , 2qs − 2. The valuation of G(z) at any other place 
of P 1

z is even; namely, it is 2 at the zero of z, −2qs at the pole of z, and 0 at the zero of z − μ whenever 
G(μ) �= 0. By Theorem 2.2, the only ramified places in C1 → P 1

z are the zeros of z − λ1, . . . , z − λ2qs−2; 
hence,

g(C1) = 1 + 2(g(P 1
z ) − 1) + 1

2(2qs − 2)(2 − 1) = qs − 2.

Since C has equation (Sqs −S)2 = G(Z), it is enough to show that C is an Artin-Schreier cover of C1, with 
covering ϕ : C → C1, (Z, S) �→ (Z, U = Sqs − S), of degree qs. To this aim, consider the two poles P∞ and 
Q∞ of u on C1; the rational function 1/z is a local parameter at each of them, i.e. vP∞(1/z) = vQ∞(1/z) = 1. 
By direct computation, the Laurent series of u at P∞ with respect to 1/z is

u =
√

ηqs (1/z)−qs − β
√
η (1/z)−1 + w,
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for some w ∈ K(C1) with vP∞(w) ≥ 0. By choosing ωP∞ = √
ηz one has that u − (ωqs

P∞
−ωP∞) has valuation 

−1 at P∞, because β �= 1. Analogously, there exists ωQ∞ such that vQ∞(u − (ωqs

Q∞
− ωQ∞)) = −1. Hence, 

by Theorem 2.3, C is an absolutely irreducible Artin-Schreier extension C1 of degree qs.
The ramified places in C → C1 are exactly P∞ and Q∞, which are totally ramified; any other place of C1

is unramified under C. Therefore,

g(C) = qs · g(C1) + qs − 1
2 (−2 + 2 · 2) = q2s − qs − 1. �

Proposition 3.8. Let C be the plane curve with affine equation (4). If

n ≥
{

4s + 2 if q = 3 and s > 1;
4s + 1 otherwise,

then there exists an affine Fqn-rational point (z̄, ̄s) of C such that t̄ = ηz̄2−s̄2

4 is different from zero.

Proof. By Theorem 3.7, C is absolutely irreducible with genus g(C) = q2s − qs − 1. By Theorem 2.4, the 
number Nqn of Fqn-rational places of C satisfies

Nqn ≥ qn + 1 − 2(q2s − qs − 1)
√
qn.

From the proof of Theorem 3.7 the following facts follow.

• z has exactly 2 poles on C, which coincide with the poles of s, namely the places lying over P∞ and Q∞.
• Using the equation of C, the zeros of t = ηz2−s2

4 = (√ηz−s)(√ηz+s)
4 on C are also zeros of (β − 1)zqs+1

and hence of z as β �= 1; thus, they are the common zeros of z and s on C, and there are exactly 2 of 
them.

Altogether, there are 4 places of C which are either poles of s or z or t, or zeros of t. The assumption on n
implies that

qn + 1 − 2(q2s − qs − 1)
√
qn > 4,

whence Nqn > 4. Then there exists an Fqn-rational place P which is not a pole of z, s, or t, and is not a 
zero of t. Then the point (z̄, ̄s) = (z(P ), s(P )) yields the claim. �

From Theorem 3.6 and Proposition 3.8 follows Corollary 3.9, which is our main result Theorem 1.1 when 
q is odd.

Corollary 3.9. Let q be an odd prime power, s ≥ 1 be such that gcd(s, n) = 1. Suppose that

n ≥
{

4s + 2 if q = 3 and s > 1;
4s + 1 otherwise.

Then for every δ ∈ Fq2n satisfying Nq2n/qn(δ) /∈ {0, 1} there exists a ∈ F∗
q2n such that dimFq

ker(fa,b) = 2, 
where b = δa.
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3.2. Proof of Theorem 1.1 for q even

Let q be a power of 2. The conditions of Theorem 3.6 read:

1. T + T qs + βSqs+1 + AS = 0, with β = α
1+α /∈ {0, 1};

2. S �= 0 and Trqn/2(T/S2) = 1;
3. B = Sqs−1;
4. A2 + ASqs + S2qs−2T + T qs = 0.

By 1. we get

A = βSqs + T + T qs

S
,

which can be replaced in 4. obtaining

(β2 + β)S2(qs+1) + Sqs+1(T qs + T ) + S2qsT + S2T qs + T 2qs + T 2 = 0. (5)

Set T = S2Y . Then (5) reads H(S, Y ) = 0, where

H(S,Y )
S4 = Y 2 + S4(qs−1)Y 2qs + β2S2(qs−1) + Sqs−1Y +

S3(qs−1)Y qs + βS2(qs−1) + S2(qs−1)Y + S2(qs−1)Y qs .

(6)

Straightforward computation using Trqs/2(Y ) + Trqs/2(Y )2 = Y qs + Y shows that the polynomial H(S, Y )
in (6) splits as follows.

Lemma 3.10. We have H(S, Y ) = G(S, Y ) ·G′(S, Y ), where

G(S, Y ) = S2(qs−1)Y qs + Sqs−1(1 + β + Trqs/2(Y )) + Y,

G′(S, Y ) = S2(qs−1)Y qs + Sqs−1(β + Trqs/2(Y )) + Y.

The Condition 2. is equivalent to the existence of an element Z ∈ Fqn such that

T = S2(Z2 + Z + ε), (7)

for some fixed ε ∈ Fqn such that Trqn/2(ε) = 1.
Let C be the plane curve with affine equation F (S, Z) = G′(S, Z2 + Z + ε).

In order to prove Theorem 1.1 when q is even, by Theorem 3.6 and the arguments at the beginning of 
Section 3.2, it is enough to prove the existence of an affine Fqn-rational point (s̄, ̄z) of C such that s̄ �= 0 and 
z̄2 + z̄ + ε �= 0. This is done by showing that C is absolutely irreducible, computing its genus, and applying 
the Hasse-Weil lower bound. To this aim, we consider the subcover

ϕ : C → C1, (S,Z) �→ (X = Sqs−1, Z).

The curve C1 has equation F1(X, Z) = 0, where

F1(X,Z) = X2(Z2 + Z + ε)q
s

+ X(β + Trqs/2(Z2 + Z + ε)) + Z2 + Z + ε.
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We prove that C1 is absolutely irreducible being an Artin-Schreier cover of P 1
z , and compute its genus. Then 

we prove that C is absolutely irreducible being a Kummer extension of C1, and compute its genus.
Let γ, γ + 1 be the roots of Z2 + Z + ε ∈ Fqn [Z].

Lemma 3.11. The curve C1 is absolutely irreducible with genus qs − 1.

Proof. Consider the dominant rational map

ψ : C1 → D, (X,Z) �→
(
U = (Z2 + Z + ε)qs

β + Trqs/2(Z2 + Z + ε) ·X, Z

)
.

Clearly ψ is birational, and the curve D has equation

D : (U2 + U) · (Zqs + Z + Trqs/2(ε) + β)2 = (Z2 + Z + ε)q
s+1.

We prove that τ : D → P 1
z , (U, Z) �→ Z, is an Artin-Schreier cover. Consider the coordinate function z of 

P 1
z and the rational function

θ = (z2 + z + ε)qs+1

(zqs + z + Trqs/2(ε) + β)2 ∈ K(P 1
z ).

For any of the qs distinct roots ζ ∈ K of the polynomial T qs + T + Trqs/2(ε) + β, let Pζ be the zero of 
tζ = z + ζ. By direct computation, θ has valuation −2 at Pζ , a local parameter at Pζ is tζ , and the Laurent 
series of θ at Pζ with respect to tζ is

θ = (ζ2 + ζ + ε)q
s+1t−2

ζ + (ζ2 + ζ + ε)q
s

t−1
ζ + wζ ,

with vPζ
(wζ) ≥ 0. Choose ωζ =

√
(ζ2 + ζ + ε)qs+1 t−1

ζ , so that

θ + ω2
ζ + ωζ =

(
(ζ2 + ζ + ε)q

s

+
√

(ζ2 + ζ + ε)qs+1
)
t−1
ζ + wζ .

If (ζ2 + ζ + ε)qs +
√

(ζ2 + ζ + ε)qs+1 = 0, then by using ζq
s + ζ + Trqs/2(ε) + β = 0 one gets β2 + β = 0, 

a contradiction to β /∈ {0, 1}. Thus, vPζ
(θ + ω2

ζ + ωζ) = −1. Therefore, by Theorem 2.3, τ is an absolutely 
irreducible Artin-Schreier cover of P 1

z , and Pζ is totally ramified in τ .
By direct computation, the pole P∞ of z in P 1

z satisfies vP∞(θ + ω2
∞ + ω∞) ≥ 0, where ω∞ = z + γ. 

Thus, P∞ is unramified in τ . Any place of P 1
z other than the places Pζ is unramified in τ . Therefore, by 

Theorem 2.3, C1 has genus

g(C1) = g(D) = 1
2 · (−2 + qs(1 + 1)) = qs − 1. �

Theorem 3.12. For the curve C the following holds.

(a) C is absolutely irreducible with genus q2s − qs − 1.
(b) Let s and z be the coordinate functions of C, and let t = s2(z2 + z + ε). The number of Fqn-rational 

places of C which are zeros of t, or poles of either s or z or t, is at most 2qs + 2.

Proof. We compute the valuation of x at the places of C1, using the notation and the results of the proof 
of Lemma 3.11.
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In the covering τψ : C1 → P 1
z denote by P ′

ζ the place lying over Pζ ; P ′
∞,1 and P ′

∞,2 the places over P∞; 
by Q′

γ,1 and Q′
γ,2 the places over the zero Qγ of z + γ; by Q′

γ+1,1 and Q′
γ+1,2 the places over the zero Qγ+1

of z + γ + 1.
Recall that x = η · u, where η = β+Trqs/2(z2+z+ε)

(z2+z+ε)qs . By direct computation,

vP (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if P = P ′
ζ ,

qs − 1 if P ∈ {P ′
∞,1, P

′
∞,2},

−qs if P ∈ {P ′
γ,1, P

′
γ+1,1},

1 if P ∈ {P ′
γ,2, P

′
γ+1,2},

0 otherwise.

Thus, by Theorem 2.2, ϕ : C → C1 is a Kummer cover of degree qs − 1, and C has genus

g(C) = 1 + (qs − 1)(qs − 2) + 1
2 · 4 · (qs − 2) = q2s − qs − 1.

On C there are exactly:

• 2 poles of s, namely the places over P ′
γ,1 and P ′

γ+1,1;
• 2(qs − 1) poles of z, namely the places over P ′

∞,1 and P ′
∞,2;

• 2 zeros of s which are not poles of z, namely the places over P ′
γ,2 and P ′

γ+1,2;
• 4 zeros of y = z2 + z + ε, which lie over P ′

γ,1, P ′
γ+1,1, P ′

γ,2, P ′
γ+1,2.

Altogether, the number of Fqn-rational places of C which are poles of s, z, t, or are zeros of t, is smaller 
than or equal to 2qs + 2. �

From Theorems 3.6 and 3.12 follows Corollary 3.13, which is our main result Theorem 1.1 when q is even.

Corollary 3.13. Let q be an even prime power, s ≥ 1 be such that gcd(s, n) = 1. Suppose that

n ≥
{

4s + 2 if q = 2 and s > 2;
4s + 1 otherwise.

Then for every δ ∈ Fq2n satisfying Nq2n/qn(δ) /∈ {0, 1} there exists a ∈ F∗
q2n such that dimFq

ker(fa,b,s) = 2, 
where b = δa.

Proof. By Theorems 2.4 and 3.12(a), the number Nqn of Fqn-rational places of C satisfies

Nqn ≥ qn + 1 − 2(q2s − qs − 1)
√
qn > 2qs + 2.

By Theorem 3.12(b), there exists an affine Fqn-rational poin (s̄, ̄z) of C such that t̄ = s̄2(z̄2 + z̄ + ε) is 
different from zero. The claim follows. �
4. Applications to linear sets and rank metric codes

Let Λ = PG(V, Fqm) = PG(1, qm), where V is a vector space of dimension 2 over Fqm . A point set L of 
Λ is said to be an Fq-linear set of Λ of rank k if it is defined by the non-zero vectors of a k-dimensional 
Fq-vector subspace U of W , i.e.
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L = LU = {〈u〉Fqm
: u ∈ U \ {0}}.

We say that two linear sets LU and LW of Λ = PG(1, qm) are PΓL-equivalent if there exists ϕ ∈ PΓL(2, qm)
such that ϕ(LU ) = LW .

We start by pointing out that if the point 〈(0, 1)〉Fqm
is not contained in a linear set LU of rank m of 

PG(1, qm) (which we can always assume after a suitable projectivity), then U = Uf = {(x, f(x)) : x ∈ Fqm}

for some q-polynomial f(x) =
m−1∑
i=0

aix
qi ∈ L̃m,q. In this case we will denote the associated linear set by Lf . 

Also, recall that the weight of a point P = 〈u〉Fqm
is wLU

(P ) = dimFq
(U ∩ 〈u〉Fqm

).
One of the most studied classes of linear sets of the projective line, especially because of its applications 

(see e.g. [21,23]), is the family of maximum scattered linear sets. A maximum scattered Fq-linear set of 
PG(1, qm) is an Fq-linear set of rank m of PG(1, qm) of size (qm − 1)/(q − 1), or equivalently a linear set 
of rank m in PG(1, qm) all of whose points have weight one. If Lf is a maximum scattered linear set in 
PG(1, qm), we also say that f is a scattered polynomial; see [23]. The known scattered polynomials of Fqm

are

1. f1(x) = xqs ∈ L̃m,q, with gcd(s, m) = 1, see [6];
2. f2(x) = xqs + αxqm−s ∈ L̃m,q, with m ≥ 4, gcd(s, m) = 1, Nqm/q(α) /∈ {0, 1}, see [17,18,23];
3. f3(x) = xqs + αxqs+

m
2 ∈ L̃m,q, m ∈ {6, 8}, gcd(s, m2 ) = 1 and some conditions on α, see [9] and below;

4. f4(x) = xq + xq3 + αxq5 ∈ L̃6,q, q odd and α2 + α = 1, see [13,19];
5. f5(x) = hq−1xq − hq2−1xq2 + xq4 + xq5 ∈ L̃6,q, q odd, hq3+1 = −1, see [4,29].

In [9], the authors introduced the family of linear sets Lδ,s of rank 2n in PG(1, q2n) mentioned in 3., i.e. 
those linear sets defined by the Fq-subspace

Uδ,s = {(x, fδ,s(x)) : x ∈ Fq2n} ⊂ Fq2n × Fq2n , (8)

where

fδ,s(x) = xqs + δxqn+s ∈ L̃2n,q,

with Nq2n/qn (δ) /∈ {0, 1}, 1 ≤ s ≤ 2n −1 and gcd(s, n) = 1. The relevance of this family relies on the property 
that each point of Lδ,s has weight at most two; see [9, Proposition 4.1]. In [9, Section 7] the authors proved 
that for n = 3 and q > 4 there exists δ ∈ Fq2 such that Ls,δ is scattered; for n = 4, q odd and δ2 = −1 the 
linear set Lδ,s is scattered. In [22, Theorem 7.3] and (see also [1]) the authors completely determined for 
n = 3 necessary and sufficient conditions on δ ensuring Lδ,s to be scattered. Note that for n = 3 we may 
restrict to the case s = 2, since every linear set Lδ,s is equivalent to Lδ′,2 for some δ′ ∈ F∗

q2n . More precisely, 
if Nq6/q3(δ) /∈ {0, 1} and we denote − 1

δq3+1−1 by A, one has that Lδ,2 is scattered if and only if the equation

Y 2 − (Trq3/q(A) − 1)Y + Nq3/q(A) = 0 (9)

admits two distinct roots in Fq. Whereas, in [1], the authors determined the number of inequivalent maximum 
scattered subspaces defined by the polynomials of shape fδ,s when n = 3.

Theorem 4.1. Let q be a prime power and n, s be two relatively prime positive integers. Suppose that

n ≥
{

4s + 2 if q = 3 and s > 1, or q = 2 and s > 2;
4s + 1 otherwise.
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Then, for every δ ∈ F∗
q2n , the Fq-linear set Lδ,s in PG(1, q2n) is not scattered.

Proof. For every m ∈ Fq2n , the weight of the point 〈(1, m)〉Fq2n
in Lδ,s coincides with the dimension over 

Fq of the kernel of fδ,s(x) −mx.
If Nq2n/qn(δ) = 1, then the point 〈(1, 0)〉Fq2n

has weight n in Lδ,s. Let Nq2n/qn(δ) �= 1. By Theorem 1.1, 
there exists a ∈ F∗

q2n such that dimFq
ker(fa,δa,s(x)) = 2, whence

dimFq
ker

(
a

(
fδ,s(x) + 1

a
x

))
= 2.

This implies that the point 〈
(
1,− 1

a

)
〉Fq2n

has weight 2 in Lδ,s. The claim is proved. �
Hence, we have the following description for the linear set Lδ,s.

Corollary 4.2. Let q be a prime power and n, s be two relatively prime positive integers.

• If n = 3, then Lδ,s is a scattered linear set if and only if Equation (9) admits two distinct roots in Fq.
• If n = 4, q is odd and δ2 = −1 then Lδ,s is scattered.
• If

n ≥
{

4s + 2 if q = 3 and s > 1, or q = 2 and s > 2,
4s + 1 otherwise,

then, for every δ ∈ F∗
q2n , Lδ,s is not scattered.

Proof. The claim follows from [22, Theorem 7.3], [9, Theorem 7.2], and Theorem 4.1. �
Among the known scattered polynomials listed above, the families in 3., 4. and 5. provide scattered 

polynomials for infinitely many q’s, but only over a specific extension of Fq, namely either Fq6 or Fq8 . 
Unlike this situation, the families in 1. and 2. provide scattered polynomials over infinitely many extensions 
Fqm of Fq; they are named respectively as scattered polynomials of pseudoregulus type, and as scattered 
polynomials of LP type (after Lunardon and Polverino).

The scattered polynomials of pseudoregulus or LP type have raised the following question: which poly-
nomials over Fqm are scattered over infinitely many extensions of Fqm?

Definition 4.3. [5, Section 1] Let f(x) ∈ L̃m,q, 0 ≤ t ≤ m − 1, � ≥ 1, and U� = {(xqt , f(x)) : x ∈ Fqm�}. 
We say that f(x) is an exceptional scattered polynomial of index t if LU�

is a scattered Fq-linear set in 
PG(1, qm�) for infinitely many �’s.

Clearly, the scattered polynomials of pseudoregulus type are exceptional scattered of index 0. Also, for 
the scattered polynomial f2(x) of LP type,

Uf2 = {(xqs , xq2s
+ αx) : x ∈ Fqm};

thus, the polynomial xq2s + αx is exceptional scattered of index s.
For a scattered polynomial f(x) ∈ L̃m,q of index t, we say that f(x) is t-normalized if the following 

properties hold: f(x) is monic; the coefficient of xqt in f(x) is zero; if t > 0, the coefficient of x in f(x) is 
nonzero. Up to PGL-equivalence of the corresponding scattered linear set, we may always assume that f(x)
is t-normalized.
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Theorem 4.4. Let f(x) ∈ L̃m,q be a t-normalized exceptional scattered polynomial of index t. Then the 
following holds.

• If t = 0, then f(x) is of pseudoregulus type; see [5, Corollary 3.4] for q > 5, [3, Section 4] for q ≤ 5.
• If t = 1 or t = 2, then f(x) is either of pseudoregulus type or of LP type; see [5, Corollary 3.7] for 

t = 1, [3, Corollary 1.4] for t = 2.
• If t ≥ 3, q is odd, and max{degq f(x), t} is an odd prime, then f(x) = x; see [14, Theorem 1.2].

Recall that the polynomials f3(x) of family 3. in the list above are scattered under certain assumptions 
for m ∈ {6, 8}; even when f3(x) is not scattered, still all the points of Lf3 have weight at most 2. Thus, one 
may conjecture that family 3. contains scattered polynomials over Fqm for every even m. Note that, even if 
this is the case, the arising scattered polynomials are not exceptional: not only the coefficients but also the 
degree depend heavily on the underlying field Fqm .

Our asymptotic result Theorem 1.1 shows that the family of scattered polynomial in 3. cannot be extended 
to any higher extension Fqm when m is large enough with respect to s.

In [23, Section 5] Sheekey showed that scattered Fq-linear sets of PG(1, qm) of rank m yield Fq-linear 
MRD-codes of Fm×m

q with minimum distance m −1 and left idealizer isomorphic to Fqm ; see [10,12,25,30] for 
further details on such kind of connections and see [24] for generalities on rank metric codes. We briefly recall 
here the construction from [23]. Let Uf = {(x, f(x)) : x ∈ Fqm}, where f(x) is a scattered q-polynomial. 
The choice of an Fq-basis for Fqm defines a canonical ring isomorphism between End(Fqm , Fq) and Fm×m

q . 
Thus, the set

Cf = {x �→ af(x) + bx : a, b ∈ Fqm} ⊂ End(Fqm ,Fq)

corresponds to a set of m × m matrices over Fq forming an Fq-linear MRD-code with minimum distance 
m − 1 and left idealizer isomorphic to Fqm ; see also [9, Section 6].

Now consider the set

Cfδ,s = {x �→ a(xqs + δxqs+n

) + bx : a, b ∈ Fq2n},

which corresponds to a set of 2n ×2n matrices over Fq forming an Fq-linear rank metric code with minimum 
distance 2n − i, where

i = max{wLδ,s
(P ) : P ∈ PG(1, q2n)}.

The following theorem is a consequence of Corollary 4.2 and states that, when n is large enough, Cfδ,s is 
not an MRD-code.

Theorem 4.5. Let q be a prime power and n, s be two relatively prime positive integers.

• If n = 3, then Cfδ,s is an MRD-code if and only if Equation (9) admits two distinct roots in Fq; see [9]
and [22].

• If n = 4, q odd and δ2 = −1 then Cfδ,s is an MRD-code; see [9].
• If

n ≥
{

4s + 2 if q = 3 and s > 1, or q = 2 and s > 2
4s + 1 otherwise,

then, for every δ ∈ F∗
2n , Cfδ,s is not an MRD-code and its minimum distance is n − 2.
q
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To conclude our paper, we point out a conjecture on the polynomials of shape fδ,s when n = 4, supported 
by the computational results presented in [9, Remark 7.4].

Conjecture 4.6. Let fδ,s(x) = xqs + δxq4+s ∈ L̃8,q with Nq8/q4(δ) /∈ {0, 1} and s ∈ {1, 3, 5, 7}. Then fδ,s(x)
is a scattered polynomial if and only if Nq8/q4(δ) = −1.
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