期刊论文详细信息
STOCHASTIC PROCESSES AND THEIR APPLICATIONS 卷:130
Contact process under renewals II
Article
Fontes, Luiz Renato1  Mountford, Thomas S.2  Vares, Maria Eulalia3 
[1] Univ Sao Paulo, Inst Matemat & Estat, Sao Paulo, SP, Brazil
[2] Ecole Polytech Fed Lausanne, Dept Math, CH-1015 Lausanne, Switzerland
[3] Univ Fed Rio de Janeiro, Inst Matemat, Rio De Janeiro, RJ, Brazil
关键词: Contact process;    Percolation;    Renewal process;   
DOI  :  10.1016/j.spa.2019.04.008
来源: Elsevier
PDF
【 摘 要 】

We continue the study of renewal contact processes initiated in a companion paper, where we showed that if the tail of the interarrival distribution mu is heavier than t(-alpha) for some alpha < 1 (plus auxiliary regularity conditions) then the critical value vanishes. In this paper we show that if mu has decreasing hazard rate and tail bounded by t(-alpha) with alpha > 1, then the critical value is positive in the one-dimensional case. A more robust and much simpler argument shows that the critical value is positive in any dimension whenever the interarrival distribution has a finite second moment. (C) 2019 Published by Elsevier B.V.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_spa_2019_04_008.pdf 318KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次