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Abstract

We continue the study of renewal contact processes initiated in a companion paper, where we showed
that if the tail of the interarrival distribution µ is heavier than t−α for some α < 1 (plus auxiliary
regularity conditions) then the critical value vanishes. In this paper we show that if µ has decreasing
hazard rate and tail bounded by t−α with α > 1, then the critical value is positive in the one-dimensional
case. A more robust and much simpler argument shows that the critical value is positive in any dimension
whenever the interarrival distribution has a finite second moment.
c⃝ 2019 Published by Elsevier B.V.
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1. Introduction

In this article we continue the study of renewal contact processes begun in the companion
paper [1], but whereas that article gave general conditions for the critical value to equal zero,
here we consider conditions entailing the strict positivity of the critical value.

The renewal contact process is heuristically a model of infection spread, taking values in
{0, 1}

Zd
, where for a configuration ξ ∈ {0, 1}

Zd
, the value ξ (x) = 1 indicates that individual

x is sick and ξ (x) = 0 means it is healthy. Healthy individuals become sick at a rate equal
to some fixed parameter λ times the number of infected neighbours. Once sick, the sickness
lasts until the next occurrence of a renewal process at the corresponding site; the renewal
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sequences are independent with the same interarrival distribution µ for all x . Upon completion
of this renewal period the individual reverts to the healthy (but reinfectable) state it had prior
to this infection. When µ is the exponential distribution (typically fixed with rate 1), this is the
classical Harris contact process. With general distributions for the interarrival times, we lose
the Markov property, but it can still sensibly be viewed as having a percolation structure. This
work, as well as the companion paper [1], has affinities with [2,3], which considered contact
processes with exponential infections and transmissions but where the rates were randomly
assigned.

The setup is the same as in [1], to which we refer for further discussion and references.
We have for each ordered pair (x, y) of neighbouring points in Zd (in the usual ℓ1-norm) a
Poisson process Nx,y of rate λ (or a process Nx,y,λ if one is interested in comparing processes
with differing infection rates). We also associate renewal processes Rx for x ∈ Zd . All these
processes are independent of each other. Typically but not always (see Section 3) the Rx are
taken to be i.i.d. renewal processes starting at 0. In this latter case we may write

Rx = {Sx,n : n ≥ 1},

where Sx,n =
∑n

k=1 Tx,k for {Tx,k : x ∈ Zd , k ≥ 1} i.i.d. random variables with law the
designated µ.

Our process is then constructed via paths. A path from (x, s) to (y, t) for x, y ∈ Zd and
s < t is a càdlàg function γ : [s, t] → Zd so that

(i) γ (s) = x ;
(ii) γ (t) = y;
(iii) ∀u ∈ [s, t], u /∈ Rγ (u);

(iv) ∀u ∈ [s, t], if γ (u−) ̸= γ (u), then u ∈ Nγ (u−),γ (u).
Except for Section 2 we will be dealing with d = 1 in this paper.

Definition 1. Given bounded subsets of Zd
×R, C and D, we say there is a crossing from C

to D if there exists a path γ : [s, t] → Zd so that

(γ (s), s) ∈ C and (γ (t), t) ∈ D.

Given these processes, the renewal contact process (RCP) starting at A ⊂ Zd , ξ A
t is, as

usual, defined by

ξ A
t (y) = 1 ⇐⇒ ∃ a path from (x, 0) to (y, t) for some x ∈ A.

(If the infection rate is not fixed we may also write it as ξ
A,λ

t .)
For this process we have (taking the usual identification of ξ : Zd

→ {0, 1} with the subset
of points in Zd with ξ value 1) that

ξ A
t = ∪x∈Aξ

{x}

t .

That is, like the classical contact process, the process is additive.
Besides losing the Markov property (unless the law µ is exponential), we no longer typically

have the FKG property, though (see Section 3) there is a larger class of renewal processes for
which this holds.

On the other hand, in our model the processes Nx,y,λ remain independent Poisson processes
and we may construct these processes so that

∀λ < λ′, x, y Nx,y,λ ⊂ Nx,y,λ′ .
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This being the case, if we use the same renewal processes to generate the respective contact
processes, we have

∀A ⊂ Z, x, λ < λ′, ξ A,λ
t (x) ≤ ξ A,λ′

t (x).

From this we immediately have that ∃ λc ∈ [0, ∞] so that
λ < λc implies P(ξ {0},λ

t = ∅ for all large t) = 1, and
λ > λc implies P(ξ {0},λ

t ̸= ∅ for all t) > 0.
Equivalently,

λc = inf{λ : P(τ 0
= ∞) > 0},

where τ 0
= inf{t : ξ

{0}

t = ∅}.
By additivity and translation invariance of the process, for any finite A ⊂ Zd , λ < λc

implies P(ξ A,λ
t = ∅ for all large t) = 1 and λ > λc implies P(ξ A,λ

t ̸= ∅ for all t) > 0.
In general the value λc need not be strictly positive and indeed our first paper shows that in

a large class of cases λc is in fact 0. In that paper we showed that if the law µ had the property
that there exist ϵ, C1 > 0 and t0 > 0 so that µ([t, ∞)) ≥ C1/t1−ϵ for all t ≥ t0, then (given
auxiliary regularity hypotheses) our process had critical value 0. Here we show that if the tails
are suitably bounded then the critical value must be strictly positive when d = 1.

We begin with the easiest case of finite second moment:

Theorem 1. For a renewal contact process on Zd , if the law µ satisfies
∫

t2µ(dt) < ∞ then
λc > 0.

The proof uses a branching process argument which is somewhat hidden by the given non
Markov renewal structure. We would like to emphasize that this result requires no auxiliary
regularity assumptions and is valid in all dimensions. Indeed it is valid in the more general
framework of graphs of bounded degree. Furthermore if we recast the question as a percolation
problem where space–time point (x, t) ∈ Zd

× R+ is connected to space–time (y, s) if there
exists n and {xi }

n
i=0, {ti }n

i=0 so that
(i) x0 = x, t0 = t and xn−1 = xn = y, tn = s,
(ii) ∀ 0 ≤ i < n − 1, |xi − xi+1| = 1 and ∀ 1 ≤ i < n − 1, ti ∈ Nxi ,xi+1

and
(iii) ∀ 0 ≤ i < n, Rxi ∩ [ti , ti+1] = ∅,

then the given argument shows that (in the obvious sense) there is no percolation for small λ.
The argument leaves a definite gap with the previous results: ignoring technical assumptions,

if the tail µ([t, ∞)) is “like” 1
t1−ϵ then λc = 0, if it is “like” 1

t2+ϵ then λc > 0.
The next theorem is the main result of the paper and makes a step in the direction of filling

this gap. It reverts to classical percolation ideas such as RSW crossing estimates and a recursion
argument to push these together. It also requires the use of FKG inequalities, which imposes
more stringent assumptions on µ:

Hypothesis A. µ has a density f and distribution function F(t) =
∫ t

0 f (u)du so that the
hazard rate f (t)

1−F(t) is decreasing in t .

Theorem 2. Let µ satisfy Hypothesis A and
∫

tαµ(dt) < ∞ for some α > 1. Then the
corresponding renewal contact process on Z has strictly positive critical value.
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Remark. The arguments used in the proof of Theorem 2 rely on putting together distinct
crossing paths, which means that our proof works only for d = 1.

Outline of the proof. Let us at this point give an overall picture of our strategy to prove
Theorem 2. There are three main parts. First, we relate the survival of the infection from the
origin up to time 2n to space or time crossings (to be precisely defined in Section 4) of space–
time rectangles of spatial and temporal side lengths ⌊2rβ

⌋ and 2r , respectively, for suitable
β ∈ (0, 1) and r ≤ n. See proof of Theorem 2 (at the beginning of Section 5). In this part,
dimensionality and the FKG inequality play a crucial role.

From the first part, it is enough to show that the probability of the space or time crossings
mentioned above vanishes as r → ∞. This is the content of Proposition 6, which is in turn
proved via a recursion scheme, in two more parts, as follows. Let us focus on time crossings
(the space crossings are treated similarly, if more simply). A time crossing of [0, ⌊2nβ

⌋]×[0, 2n]
implies the time crossings of 2k subrectangles [0, ⌊2nβ

⌋] × [i2n−k, (i + 1)2n−k]. Here k is
a fixed (large) number, independent of n. We need to estimate the successive conditional
probabilities. Since we have a renewal process on each time-line {x} × [0, ∞), in the event,
say A, that for each even i and x ∈ [0, ⌊2nβ

⌋] there is a renewal mark in the previous time
interval [(i − 1)2n−k, i2n−k], we get that the conditional probability of a crossing of the i th
subrectangle, given the first renewal marks in the previous subrectangle and all previous history,
becomes independent of the history up to the previous even rectangle; a product of the (sups
of) crossing probabilities (with the renewal processes starting from different points in the
previous subrectangle) over the even subrectangles ensues. The probability of the complement
of the above mentioned event A is controlled by the integrability assumption on µ. Yet, the
subrectangles do not have the proper ⌊2ℓβ

⌋ × 2ℓ dimensions. We relate each of these events to
space or time crossings of rectangles of dimensions ⌊2β(n−ℓ)

⌋× 2n−ℓ, with ℓ = k or ℓ = k + 1.
This involves considering a number of cases where such crossings take place, as done in
Section 5.1. In most cases it is just a matter of dealing with a union bound (depending on the
location of the crossing). Nevertheless, there is one case where we need again to use Lemma 4,
where FKG is crucial. This is the second part, accomplished in Proposition 12.

In the concluding argument we use the second part to set up a k-step recursion scheme,
see (11), by the iteration of which, using the decay of the distribution of the inter-arrival times
and taking λ small, we get the final result.

2. Finite second moment. Proof of Theorem 1

In this section we assume that
∫

t2µ(dt) < ∞. The importance of this hypothesis is that it
yields the following property for our renewal process R upon which the proof relies:

There exists C < ∞ so that uniformly over t ≥ 0 the length of the renewal interval It
which contains the point t satisfies E(|It |) < C . (∗)

A key part of the analysis is to consider “intervals” infected by the origin (0, 0). More
precisely, an “infected interval” is a subset of {x}×R+ of the form {x}× J for some x ∈ Zd

and some interval J ⊂ R so that all points (x, t) in it satisfy (0, 0) → (x, t) (and no points in
it belong to R) and finally it is a maximal subset with this property. So an infected interval,
I , will be of the form {x} × [sI , tI ) where sI is its infection time and tI is the first time point
after sI that belongs to Rx .

We now introduce a “coding” of infected intervals. The interval containing (0, 0) is coded
as ∅. Other infected intervals are coded recursively. If I = {x}× [sI , tI ) and sI ∈ Ny,x , then
for some positive integers k and i j , 1 ≤ j ≤ k, we code I by (i1, . . . , ik) if (y, sI ) belonged to
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an interval coded (i1, . . . , ik−1) and if sI is the ik’th infection point (in chronological order) in
the interval coded (i1, . . . , ik−1). We can think of k as the “generation” of interval I . We stress
that the generation corresponds to the first infection time and not to the “smallest possible” k.
Thus not all arrows result in the creation of an infected interval. If the r-th arrow of interval
(i1, . . . , ik−1) (here we identify intervals and their codes) infects an already infected site, then
the interval (i1, . . . , ik−1, r ) is empty or nonexistent (or the arrow is wasted).

Next we define Z+ valued random variables X i for i ∈ ∪
∞

k=0Nk , with N0 denoting the code
∅, so that X i equals the number of arrows to neighbouring time lines for interval i . This will
naturally equal zero if “interval” i is empty. We note the branching process property of the
X i ’s:

X (i1,...,ik−1) = 0 ⇒ X (i1,...,ik ) = 0, ik ≥ 1. (1)

It follows that if, for some fixed k,
∑

(i1,...,ik )

X (i1,...,ik ) = 0, then
∑

(i1,...,ik′ )

X (i1,...,ik′ ) = 0 for each

k ′ > k, and there are only finitely many infected intervals. This will immediately imply that
the contact process dies out.

In fact, we can go beyond (1) to say that σ(i1,...,ik ) = ∞ implies that X (i1,...,ik ) = 0, where
σ(i1,...,ik ) is the time of the ik’th arrow of interval (i1, . . . , ik−1).

Property (∗) at the beginning of the section implies that

E(X (i1,...,ik )|σ(i1,...,ik ) < ∞) ≤ 2Cdλ.

From this we inductively get that E
(∑

(i1,...,ik ) X (i1,...,ik )

)
≤ (2Cdλ)k+1. The condition λ <

1/2Cd thus implies that a.s. the contact process dies out, concluding the proof of Theorem 1.

3. Hypothesis A and FKG inequalities

This section clarifies the role of Hypothesis A. As stated in Proposition 3, it guarantees
the FKG property for our RCP, which will then be important for the estimates for crossing
probabilities developed in the next section, and which lead to the proof of the main theorem.

We shall deal with a family of independent renewal processes, starting from possibly differ-
ent initial points. Let f be a probability density on R+ and F the corresponding distribution
function. We assume that Hypothesis A is satisfied. A realization of the corresponding renewal
process starting at any point t0 ∈ R can be easily obtained in terms of a homogeneous Poisson
point process η on R × R+ of intensity 1.

For this let h be the hazard rate function, defined as h(t) = f (t)/(1 − F(t)). We note that
under Hypothesis A, F(t) ∈ (0, 1) for all t > 0. To construct the renewal process starting
at some point t0 ∈ R we consider all points of η in (t0, ∞) × (0, ∞) that are under the graph
of the function t ↦→ h(t − t0). Since

∫ t
0 h(s)ds = − log(1 − F(t)), with probability one there

are infinitely many such points but only a finite number with first coordinate in [t0, t0 + t]
whenever F(t) < 1. We can then take the point with the smallest first coordinate, call it (t1, u1),
i.e. u1 ≤ h(t1 − t0) and there is no point (s, u) in η with u ≤ h(s − t0) and t0 < s < t1. We
then have P(t1 − t0 > s) = e−

∫ s
0 h(v)dv

= 1 − F(s) i.e. t1 − t0 has the renewal distribution
F . Having obtained t1 we repeat the procedure replacing t0 by t1, since of course the variable
t1 is a stopping time for the filtration (Fs)s generated by η restricted to [t0, ∞) × (0, ∞),
i.e. Fs = σ (η(B) : B ⊂ [t0, s] × (0, ∞), B Borel). In this way, and using the independence
property of the Poisson variables η(B) for disjoint Borel sets B, we get t1 < t2 < · · · so that
ti − ti−1, i ≥ 1 are i.i.d. with density f .
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For the FKG property, the important point to realize is that, due to the assumption of
decreasing hazard rate, the renewal process is an increasing function of points in the Poisson
point process; if a P.p.p realization η′ differs from η by the addition of a point (s, u), then either
u is insufficiently small to add s to the renewal set R and nothing changes, or s is added. In
this case, we need to see that the sequence corresponding to η′ contains that of η. Let us write
t1 < t2 < t3 < · · · for the sequence R corresponding to η and let us assume t j < s < t j+1.
It is obvious that nothing changes up to t j . When s is added, i.e. we have u ≤ h(s − t j ), we
observe that the next point in R′ will be obtained by checking the η points that are under the
graph of v ∈ (s, ∞) ↦→ h(v−s), and taking the one with smallest first coordinate. Since s ≥ t j
we have h(v−s) ≥ h(v− t j ) for all v ≥ s, so that t j+1 is one of such points, but there could be
one with smaller first coordinate t ′

j . In this case t ′

j is added to the sequence R′ and we repeat
the argument with t ′

j instead of s. It is easy to see that after a finite number of extra points
less than t j+1 we shall add t j+1 and from that point on, the sequences continue in the same
manner.

We now consider an event depending on a finite space–time rectangle [0, L] × [0, T ] of
renewal points Dx = {(x, Sx,n)} and λ Poisson processes {Nx,y} of arrows. We can and will
assume that the renewal times Rx = {Sx,n} for x ∈ [0, L], are generated by independent
Poisson point processes ηx as just discussed.

Definition. (i) An event A is said to be increasing with respect to the λ Poisson processes {Nx,y}

if given any joint realizations ω and ω′ of the renewal sequences and λ Poisson processes such
that ω and ω′ have the same renewal points and the λ Poisson points in ω are also present in
ω′, then ω ∈ A implies ω′

∈ A.
(ii) An event is decreasing with respect to the renewal processes if whenever the config-

urations ω and ω′ have the same λ Poisson process realizations and the renewal processes
of ω dominate those of ω′ (in the sense that if for some x ∈ [0, L], (t, u′) ∈ ηx (ω′), then
(t, u) ∈ ηx (ω) for some u ≤ u′), then ω ∈ A implies ω′

∈ A.
(iii) We say that an event depending on renewal and λ Poisson process points in a finite

space–time rectangle is increasing if it is increasing with respect to the λ Poisson processes of
arrows, and decreasing with the renewal processes.

We then have, by the previous observations (and usual discretization arguments), the
following FKG inequality:

Proposition 3. Assume that the renewal sequence satisfies Hypothesis A, and let A1, A2,

. . . , An be increasing events on a finite space–time rectangle. Then

P(∩n
i=1 Ai ) ≥

n∏
i=1

P(Ai ).

Remark 1. Let R and R̃ be renewal processes starting at 0 and at some t0 > 0, respectively.
If the interarrival distribution µ satisfies Hypothesis A, these processes may be coupled in such
a way that the set of renewal marks of R that fall in [t0, ∞) is contained in the set of renewal
marks of R̃.

4. Applications of FKG inequalities to crossings

In this section we apply the previous result to a specific kind of crossing event of a rectangle,
requiring the existence of a sufficiently inclined diagonal path within a rectangle of certain
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dimensions — see (2) below. This will be an important ingredient in our strategy of proof of
Theorem 2, as outlined at the end of the Introduction, and to be undertaken in the following
section. See Lemma 4, Corollary 5 and Remark 2.

We are interested in the increasing events defined by crossings as in Definition 1.

Definition 2. We say there is a crossing from C ⊂ Z × R to D ⊂ Z × R in space–time
region H ⊂ Z × R if there exists a path γ : [s, t] → Z as in Definition 1 such that

(i) (γ (s), s) ∈ C ,
(i) (γ (t), t) ∈ D,

and
(iii) for all u ∈ [s, t], (γ (u), u) ∈ H .

Obviously the existence of a crossing is an increasing event no matter what choice of C , D
and H is made. The definition above includes the following special cases:

Definition 3. Given a space–time rectangle H = [a, b] × [S, T ], a, b ∈ Z, S, T ∈ R, we
say:
(I) H has a spatial crossing if there exists a crossing in H from C = {a} × [S, T ] to
D = {b} × [S, T ].
(II) H has a temporal crossing if there exists a crossing in H from C = [a, b] × {S} to
D = [a, b] × {T }.

Remark. A space interval [a, b] should be always understood as [a, b]Z := [a, b] ∩ Z.

A useful “building block” in analysing spatial or temporal crossings of space–time rectangles
is the event

A0 ≡ A0(c, ϵ, L , T ) (2)

for T ∈ R+, L ∈ Z+, 1/2 < c < 1 and ϵ < cT/8. A0 is the event that there is a crossing (in
[0, L] × R+) from {0} × [0, ϵ] to {L} × [cT, cT + ϵ].

Let I0 = [0, ϵ] and recursively define the time intervals I1 = [cT, cT + ϵ], I2k = I2k−1 − ϵ,
I2k+1 = I2k + cT , where I ± a = {x ± a : x ∈ I }. Define A1 to be the event that there is a
crossing (within [0, L] × R+) from {L} × I2 to {0} × I3, and A2 to be the event that there is
a crossing (within [0, L] × R+) from {0} × I4 to {L} × I5, A3 to be the event that there is a
crossing (within [0, L] × R+) from {L} × I6 to {0} × I7, and so on.

Lemma 4. P(A0 ∩ A1 · · · ∩ Am) ≥
∏m

i=0 P(Ai ) ≥ P(A0)m+1.

Proof. The first inequality follows from Proposition 3 since the events in question are
increasing. For the second inequality, observe that for all i, P(Ai ) ≥ P(A0) by our choice
of FKG renewal distribution, as follows from Remark 1. □

Corollary 5. Let m be a positive integer. The probability of a temporal crossing of [0, L] ×

[ϵ, ϵ + mT ] is at least P(A0)
8
3 m+2.

Proof. The rectangle in Ai , i ≥ 0, starts at time i(cT −ϵ) and has length cT +ϵ (in the temporal
direction). It follows from the definitions that the event in the statement occurs in A0 ∩· · ·∩ An

provided n(cT −ϵ)+cT ≥ ϵ +mT . Therefore it suffices n ≥
m
x −1, where x = c−ϵ/T . From
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our hypotheses, we have that x ∈ [ 7
16 , 1), so the least integer n satisfying the above condition

is bounded above by ⌈
16
7 m⌉ ≤

8
3 m + 1, and the result follows from Lemma 4. □

Remark 2. Given the FKG property of our renewal processes, the above bound holds if for
v ≥ 0 the event that there is a temporal crossing of [0, L] × [ϵ, ϵ + mT ] is replaced by the
event that there is a temporal crossing of [0, L] × [v + ϵ, v + ϵ + mT ] in space–time rectangle
[0, L]×[v, ∞) and event A0 is replaced by the event that there is a crossing (in [0, L]×[v, ∞))
from {0} × [v, v + ϵ] to {L} × [v + cT, v + cT + ϵ].

Remark 3. The value of this result is that if c is not too small, then a reasonable probability
for a spatial crossing (in [0, L] × R+) from {0} × [0, ϵ] to {L} × [cT, cT + ϵ] yields a not
too small probability for a temporal crossing of rectangle [0, L] × [0, mT ]. Furthermore it is
easy to see that if there is a reasonable probability for a spatial crossing of [0, L] × [0, T ],
then either there is a reasonable probability of a spatial crossing for which the time difference
between its initial and final points is small (compared to T ) or a not too small probability of
a temporal crossing of [0, L] × [0, mT ] is entailed. This will be developed in the next section.

5. Crossings of rectangles

In this section we prove Theorem 2. We start the argument, following the first step of the
strategy outlined at the end of the Introduction, by reducing survival to crossings of space–time
rectangles.

Notation. For x > 0, write ⌊x⌋ = max{n ∈ Z : n ≤ x} and ⌈x⌉ = min{n ∈ Z : n > x}.

Definition 4. Let β ∈ (0, 1). Here and in the following Pr denotes the supremum over the
probabilities for the space–time rectangle [0, ⌊2rβ

⌋] × [0, 2r ] of either a spatial or a temporal
crossing. The supremum is taken over all product renewal probability measures with interarrival
distribution µ, for the renewal points starting at time points strictly less than 0. (Note the
starting points (or times) need not be the same.)

Due to the FKG property, Pr is indeed the limit of the probability of crossings (either spatial
or temporal) for [0, ⌊2rβ

⌋] × [T, T + 2r ], as T tends to infinity.
We now state the key result for this section.

Proposition 6. Assume β ∈ (0, α − 1), with α as in the statement of Theorem 2. There exists
λ0 > 0 so that for 0 ≤ λ < λ0

Pr
r→∞
−→ 0.

Given this result and Lemma 4, we quickly achieve our desired result:
We now give the proof of Theorem 2.

Proof. It is enough to show that P(τ 0
= ∞) = 0 for λ < λ0, the claimed constant of

Proposition 6. Equivalently we must show that P(τ 0 > 2r ) tends to zero as r tends to infinity.
Consider the event that τ 0 > 2r . This is contained in the union of three events defined by

the Harris system on space–time rectangle R = [−⌊2rβ/2⌋, ⌊2rβ/2⌋] × [0, 2r ]:
(I) there exists a path from (0, 0) to Z × {2r

} in R;
(II) there exists a path from (0, 0) to {⌊2rβ/2⌋} × [0, 2r ];
(III) there exists a path from (0, 0) to {−⌊2rβ/2⌋} × [0, 2r ].
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The first possibility (I) is simply a subset of the event that the space–time rectangle R has
a temporal crossing and so (given the translation invariance of the system) has probability
bounded by Pr which, by Proposition 6, tends to zero as r tends to infinity. So it remains to
find an upper bound for possibilities (II) and (III) which tends to zero as r tends to infinity.
By symmetry we need only upper bound the probability of the event (II).

We fix a large integer K which will depend upon β but not upon r , and for 1 ≤ i ≤

j ≤ K we define A(i, j) as the event that there is a crossing from {0} × [ i−1
K 2r , i

K 2r ] to
{⌊2rβ/2⌋} × [ j−1

K 2r ,
j

K 2r ] in the rectangle R′
= [0, ⌊2rβ/2⌋] × [0, 2r ].

Obviously the event ∪i, j A(i, j) contains (II).
We fix 1 ≤ i ≤ K and then split i ≤ j ≤ K into Bi = { j :

j−i+1
K ≤ 2−⌈1/β⌉

} and
Di = [i, K ]\Bi .

We have that the event ∪ j∈Bi A(i, j) is contained in the event that there is a spatial crossing
for the space–time rectangle [0, ⌊2(r−⌈1/β⌉)β

⌋] × [ i−1
K 2r , i−1

K 2r
+ 2r−⌈1/β⌉] and so its probability

is bounded by Pr−⌈1/β⌉.
For j ∈ Di we have (assuming that K is sufficiently large) that ϵ = 2r/K , cT =

( j − i)2r/K and c = 2/3 satisfy 1/2 < c < 1 and ϵ < cT/8. So by Lemma 4 (and Remark 2)
we have again assuming K was fixed large)

P(A(i, j)) ≤ (Pr )1/(2⌈1/β⌉+1).

Thus we obtain the bound for the probability of event (II)

K 2(Pr )1/(2⌈1/β⌉+1)
+ K Pr−⌈1/β⌉

and, again by Proposition 6, we are done. □

5.1. Proof of Proposition 6 — Generic crossing events

We start by introducing some generic crossing events which come up in different kinds of
spatial or temporal crossings entering our analysis of Pr , as already anticipated, and deriving
probability bounds for each of them.

Notation. If X = (X (u) : u ∈ [s, t]) is a path, we write

v(X ) := max{X (u) : u ∈ [s, t]} − min{X (u) : u ∈ [s, t]}, (3)

and call v(X ) variation of X .

Definition. For D = [a, b] × [s ′, t ′] a space–time rectangle, c ∈ (0, 1) a constant, and r an
integer, let A(D, c, r ) be the event that either there exist times s1, s2 with s2 − s1 > 2r/c and a
path X = (X (s) : s1 ≤ s ≤ s2) within D such that v(X ) < ⌊c2rβ

⌋, or there exist times s1 ≤ s2

with s2 − s1 < c2r and a path X = (X (s) : s1 ≤ s ≤ s2) within D so that v(X ) > ⌈
2rβ

c ⌉.

We then have

Proposition 7. For D, c and r as above with 2rβ(1 − c) ≥ 2,

P(A(D, c, r )) ≤ C(c)
(

b − a
2rβ

∨ 1
) (

t ′
− s ′

2r
∨ 1

)
Pr ,

where C(c) is a finite function.
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Proof. The proof consists of upper bounding the probabilities for either spatial or temporal
crossings of rectangles. It is sufficient to do the bounds separately. We will do the bound
for the first case (s2 − s1 > 2r/c) only since the proof for the other case is much the
same. Suppose there exists a path X : [s1, s2] → [a, b] (i.e. it satisfies conditions (i)-(iv)
just before Definition 1) so that s2 − s1 > 2r/c and max X (u) − min X (u) < ⌊c2rβ

⌋. Let
s ′

1 = inf{s ≥ s1, s ∈ s ′
+

1−c
2 2rZ}, then the path X restricted to interval [s ′

1, s ′

1 + 2r ] is a
temporal crossing of the space–time rectangle [a, b] × [s ′

1, s ′

1 + 2r ] whose variation is less than
⌊c2rβ

⌋. We then have that X ([s ′

1, s ′

1 + 2r ]) ⊂ [x ′

1, x ′

1 + 2rβ], where

x ′

1 = sup{x ∈ a + ⌊
1 − c

2
2rβ

⌋Z : x ≤ inf
u∈[s′

1,s′
1+2r ]

X (u)}.

From this we see that the existence of s1, s2 with s2 −s1 > 2r/c and a path X = (X (s) : s1 ≤

s ≤ s2) contained in D, v(X ) < ⌊c2rβ
⌋ implies the occurrence of ∪i, j At (i, j, c), where i, j

range over the set of integers so that (a(i, β), s ′( j, β)) := (a + i⌊ 1−c
2 2rβ

⌋, s ′
+ j 1−c

2 2r ) ∈ D
and At (i, j, c) denotes the event that the space–time rectangle[

a(i, β), a(i, β) + 2rβ]
×

[
s ′( j, β), s ′( j, β) + 2r ] .

has a temporal crossing.
The proof is completed by computing the simple upper bound for the number of such

(i, j), that is the number of i so that a ≤ a + i⌊ 1−c
2 2rβ

⌋ < b and j so that
s ′

≤ s ′
+ j 1−c

2 2r < t ′. The latter number is bounded by the least integer superior to
2(t ′

− s ′)/(1 − c)2r
≤

4
1−c

(
t ′−s′

2r ∨ 1
)

, while the former is bounded by the least integer

superior to (b−a)
⌊(1−c)2rβ/2⌋

≤ 1 + 2 (b−a)
(1−c)2rβ/2 by our assumption that (1 − c)2rβ/2 ≥ 1. This in turn

is bounded above by 4
1−c

( b−a
2rβ ∨ 1

)
. □

Definition. For a spatial interval I , t ≥ 0, r ≥ 0 and c ∈ (0, 1), let Bt (c, I, r ) denote the event
that there exists a spatial interval I ′

⊂ I of length less than ⌊c2rβ
⌋ so that there is a temporal

crossing of I ′
× [t, t + 2r ].

Then we have:

Lemma 8. Suppose that 2rβ(1 − c) ≥ 2, then P(Bt (c, I, r )) ≤ C(c)( |I |
2rβ ∨ 1)Pr for some

finite C(c) which depends on c only.

Proof. This follows in similar fashion to the previous result. Let I = [a, b] and as above
let a(i, β) = a + i⌊ 1−c

2 2rβ
⌋ for 0 ≤ i ≤

b−a
⌊2rβ (1−c)/2⌋

. Then every spatial interval, J ′, of length
at most ⌊c2rβ

⌋ which is a subset of I is contained in an interval [a(i, β), a(i, β) + ⌊2rβ
⌋] for

some 0 ≤ i ≤
b−a

⌊2rβ (1−c)/2⌋
. As before under the condition 2rβ(1 − c) ≥ 2, the number of such

i is less than 4
1−c

( b−a
2rβ ∨ 1

)
and the result follows. □

Similarly we have,

Lemma 9. For a space–time rectangle R = [a, b]×[s, s+2r ], k ∈ (0, r ]∩Z and c ∈ (0, 1), let
W (R, r, c, k) be the event that there exists a spatial crossing of a rectangle I × [s, s +2r ] ⊂ R,
where interval I has length at least 2rβ/c.

We suppose that b − a > 2(r−k)β . Then

P(W (R, r, c, k)) ≤ K (c)
b − a
2(r−k)β Pr
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for suitable K (c) finite.

And similarly we have:

Lemma 10. For a space–time rectangle R = [a, b] × [s, t], where b − a ≥ 2(r−k∗)β and
t − s ≥ 2r , k∗

∈ (0, r ] ∩ Z and c ∈ (0, 1), let H (R, r, c, k∗) be the event that there exists a
spatial crossing of a rectangle I × J ⊂ R so that

(i) interval I has length ⌊2rβ
⌋ and its left endpoint is in ⌊2(r−k∗)β

⌋Z,
(ii) interval J has length less than c2r .

Then

P(H (R, r, c, k∗)) ≤ C(c)
b − a

2(r−k∗)β

t − s
2r

Pr . (4)

Proof. Again we consider events

A(i, j) = {∃ a spatial crossing of [i⌊2(r−k∗)β
⌋, i⌊2(r−k∗)β

⌋ + ⌊2rβ
⌋] × [t j , t j + 2r ]},

where [i⌊2(r−k∗)β
⌋, i⌊2(r−k∗)β

⌋ + ⌊2rβ
⌋] ⊂ [a, b] and t j := s + 2r (1 − c)/2 ∈ [s, t]. Once

more P(A(i, j)) ≤ Pr for all (i, j) and the event H (R, r, c, k∗) ⊂ ∪i, j A(i, j), where the
union is over (i, j) satisfying the above constraint. The number of such (i, j) is the product
of ⌈(b − a)/(⌊2(r−k∗)β

⌋)⌉ with ⌈2(t − s)/2r (1 − c)⌉. By our assumptions, b − a ≥ 2(r−k∗)β and
t − s ≥ 2r , so this product is less than 4 b−a

2(r−k∗)β × 8 (t−s)
2r (1−c) . □

Definition. For integer ϵ′ > 0, L ∈ ϵ′N, T > 0 and space–time rectangle D = [a, b] × [0, T ′],
with T ′

≥ 3T , let F(ϵ′, L , T, D) be the event that there exists spatial interval I ′
= [a′, b′] ⊂

[a, b] and [t1, t2] ⊂ [0, T ′] and a spatial crossing of I ′
× [t1, t2], γ : [t1, t2] ⊂ [0, T ′] → I ′

so that
(i) a′, b′

∈ ϵ′Z, b′
− a′

≤ L
(ii) t2 − t1 ∈ [T/2, 3T ]
(iii)γ (t1) = a′, γ (t2) = b′.

Proposition 11. For ϵ′ < b − a, there is a universal nontrivial C so that

P(F(ϵ′, L , T, D)) ≤

C
(

T ′

T

)
b − a

ϵ′

L
ϵ′

P
(
∃ temporal crossing of [0, L] × [T ′, T ′

+ 3T ]
) 1

10 .

Proof. We choose ϵ =
T
17 and note that the event F(ϵ′, L , T, D) is contained in the union of{

∃ spatial crossing from {kϵ′
} × [iϵ, (i + 1)ϵ] to {(k + k ′)ϵ′

} × [ jϵ, ( j + 1)ϵ]
}

over integers i, j, k, k ′ relevant i.e. iϵ, ( j + 1)ϵ ∈ [0, T ′], ( j − i)ϵ ∈ [ 1
2 T, 3T ], kϵ′, (k + k ′)ϵ′

∈

[a, b] ∩ ϵ′Z. By Corollary 5 (see also Remark 2) the probability of this event is less than

P
(
∃ temporal crossing of [kϵ′, kϵ′

+ k ′ϵ′] × [(i + 1)ϵ, (i + 1)ϵ + 3T ]
)1/10

,

which is less than

P (∃ temporal crossing of [0, L] × [(i + 1)ϵ, (i + 1)ϵ + 3T ])1/10 .

by monotonicity. By our choice of ϵ, (i + 1)ϵ < T ′, so by the stochastic monotonicity of our
renewal processes as used in the proof of Lemma 4 (see Remark 1), this last term is dominated
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by

P
(
∃ temporal crossing of [0, L] × [T ′, T ′

+ 3T ]
)1/10

.

and the result follows from counting the number of choices of k, k ′ as before. □

5.2. Temporal crossings of ⌊2nβ
⌋ × 2n−k rectangles

We now apply the above estimates to the event of a temporal crossing of a ⌊2nβ
⌋ × 2n−k

rectangle, where k is a large fixed integer. The goal is to prove

Proposition 12. Let k be a positive integer. For 1 ≤ i ≤ 2k
− 1, consider a collection

{τx , x ∈ [0, ⌊2nβ
⌋]} of time points in [(i − 1)2n−k, i2n−k], and a probability which is the

product of the infection Poisson process probability and the renewal probability on the timelines
of [0, ⌊2nβ

⌋] starting from {(x, τx ), x ∈ [0, ⌊2nβ
⌋]}. Let us call that probability P̃. Then

there exists n0 so that for n ≥ n0, the P̃-probability that there is a temporal crossing of
[0, ⌊2nβ

⌋] × [i2n−k, (i + 1)2n−k] is less than

C(k) (Pn−k ∨ Pn−k−1)
1
10 , (5)

uniformly over {τx }, with Pr as in Definition 4 and C(k) a finite constant.

Remark. The situation described in the statement above comes up when we observe that
a temporal crossing of [0, ⌊2nβ

⌋] × [0, 2n] implies 2k temporal crossings of ⌊2nβ
⌋ × 2n−k

subrectangles. Taking advantage of the fact that
∫

tαµ(dt) < ∞ for some α > 1, we will
(outside a set of small probability) restrict to crossings of 2k−1 alternating subrectangles, with
given renewal starting marks in the timelines of previous respective subrectangles, to ensure that
we can control the probabilities occurring in the recursion step of the proof. (See Section 5.4.)

Indeed consider a temporal crossing (X (s))0≤s≤2n of [0, ⌊2nβ
⌋] × [0, 2n], and for k large

(but not depending on n) let us consider its restriction to the time interval [i2n−k, (i + 1)2n−k]:
Xk,i = (X (s) : i2n−k

≤ s ≤ (i + 1)2n−k). We wish to show that there must be crossings of
smaller rectangles of similar “scale”, yielding a probability estimate in terms of Pn−k . Thus
the above result accomplishes the second step of our strategy, as outlined at the end of the
introduction.

Proof of Proposition 12. We begin by breaking the latter kind of event into several cases.
Take k0 so that 2−k0β

≤
1−2−β

10 and k0 > 7. We note that k0, once fixed, does not depend on n.
Let v(Xk,i ) be as in (3).
Case 0. v(Xk,i ) > (1 +

2−k0β

4 )⌊2β(n−k)
⌋.

Case 1. v(Xk,i ) < ⌊2(n−k)β
⌋

(
1 −

(1−2−β )
10

)
.

Case 2. There exist τi < σi ∈ [i2n−k, (i + 1)2n−k] with σi − τi < 9
20 2n−k and:

(i) ⌊2(n−k)β
⌋

(
1 −

(1−2−β )
10

)
≤ |X (σi ) − X (τi )| ≤ (1 + 2−k0β)2(n−k)β ;

(i i) (X (s) − X (σi ))(X (s) − X (τi )) ≤ 0 for all s ∈ [i2n−k, (i + 1)2n−k].
Case 3. As in Case 2, but instead σi − τi ≥

9
20 2n−k .

The probability of the event in Case 0 is dealt with by Lemma 9 with c = (1 + 2−k0β/4)−1.
It is bounded by a constant times 2kβ Pn−k .

Case 1 implies the occurrence of the event Bt (c, [0, 2nβ], n−k) for t = i2n−k , c = 1−
1−2−β

10 .
Note that given the FKG property of the renewal processes (see Remark 1) and the fact that



Please cite this article as: L.R. Fontes, T.S. Mountford and M.E. Vares, Contact process under renewals II, Stochastic Processes and their Applications
(2019), https://doi.org/10.1016/j.spa.2019.04.008.

L.R. Fontes, T.S. Mountford and M.E. Vares / Stochastic Processes and their Applications xxx (xxxx) xxx 13

event Bt (c, [0, 2nβ], n − k) is a decreasing event for the renewal points, the probability of
Bt (c, [0, 2nβ], n−k) under P̃ is bounded from above by the probability of Bt ′ (c, [0, 2nβ], n−k)
under P , with t ′

= 2n−k . By Lemma 8 its probability is bounded by C(c)2kβ Pn−k for suitable
finite C(c).

In Case 2, since σi − τi < 9
20 2n−k , the event A(D, c, n − k − 1) occurs for D = [0, ⌊2nβ

⌋] ×

[i2n−k, (i + 1)2n−k] and 1/c = min
( 10

9 , 1
10 +

9
10 2β

)
. Again, as in Case 1, under the probability

P̃ this probability is bounded by P(A(D′, c, n−k−1)), where D′
= [0, ⌊2nβ

⌋]×[2n−k, 2 2n−k].
So by Proposition 7, this is bounded by a multiple of Pn−k−1.

In Case 3, retaining the notation introduced in Case 2, we assume without loss of generality
that X (τi ) < X (σi ) and define

τ ′

i = inf{s ≥ τi : X (s) ≥ X (τi ) + ⌊2(n−k−k0)β
⌋, X (s) ∈ ⌊2(n−k−k0)β

⌋Z};

τ ′′

i = sup{τ ′

i ≤ s ≤ σi : X (s) = X (τ ′

i )};

and (symmetrically)

σ ′

i = sup{s ≤ σi : X (s) ≤ X (σi ) − ⌊2(n−k−k0)β
⌋, X (s) ∈ ⌊2(n−k−k0)β

⌋Z};

σ ′′

i = inf{τi ≤ s ≤ σ ′

i : X (s) = X (σ ′

i )}.

We have two subcases, depending on σ ′′

i − τ ′′

i :

1. If σ ′′

i − τ ′′

i ≤
3
4 2n−k−1, then letting D = [0, ⌊2nβ

⌋] × [i2n−k, (i + 1)2n−k], we claim
that the event H (D, r, c, k∗) has occurred with c = 3/4, r = n − k − 1 and k∗

= k0.
Indeed the path from τ ′′

i to σ ′′

i ensures it, since |X (τ ′′

i ) − X (σ ′′

i )| = |X (τ ′

i ) − X (σ ′

i )| ≥

|X (σi ) − X (τi )| − 4 × 2(n−k−k0)β
≥ ⌊2rβ

⌋, where we use the lower bound in Case 2
(i) and the first condition on k0 stipulated above and for n large we have ⌊2(n−k)β

⌋

⌊2(n−k−1)β⌋
is

approximately 2β . From Lemma 10, after suitably shifting the time domain as before, we
get a P̃ probability bound of constant times Pn−k−1 for this subcase, where the constant
depends on k, k0 but not on n.

2. If σ ′′

i − τ ′′

i > 3
4 2n−k−1, then the path between τ ′′

i and σ ′′

i implies the occurrence of
F(ϵ′, L , T, D) for the same D as above, and

ϵ′
= ⌊2(n−k−k0)β

⌋, T =
1
3

2n−k, L = ⌊2(n−k)β
⌋.

From Proposition 11, we get a P̃ probability bound of constant times P
1

10
n−k for this

subcase, where again the constant depends on k, k0 but not on n.

Collecting these cases together we have that one of the above four cases must occur given
our crossing and that the probability of each of them has a bound of the form demanded. The
proof is complete.

5.3. Spatial crossings of ⌊2(n−k)β
⌋ × 2n rectangles

In this subsection we derive a bound similar to (5) for spatial crossings of ⌊2(n−k)β
⌋ × 2n

rectangles, with k a fixed number (to be chosen later). This case allows for a more direct,
simpler analysis than the one employed in the previous two subsections.

Let us fix k ≤ n and consider D := [0, ⌊2(n−k)β
⌋]×[0, 2n], which may be written as ∪

2k

i=1 Di ,
with Di := [0, ⌊2(n−k)β

⌋]× [(i −1)2n−k, i2n−k]. Let now Ri denote the event that there exists a
spatial crossing of D starting on the left hand side of Di . Ri may be partitioned into R→

i , R↗

i
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and R↑

i , meaning that the crossing ends on the right hand side of Di , Di+1, and D j for some
j > i + 1, respectively. The probabilities of the first and third events are bounded above by
Pn−k , since they imply a spatial crossing of Di and a temporal crossing of Di+1, respectively.

To bound the probability of R↗

i , we partition this event as follows. Let D−

i := [0, ⌊2(n−k)β
⌋]×

[(i − 1)2n−k, (i −
1
2 )2n−k] and D+

i := [0, ⌊2(n−k)β
⌋] × [(i −

1
2 )2n−k, i2n−k], and similarly define

D−

i+1 and D+

i+1. We then partition R↗

i into R→

i,i+1, R↑

i,i+1, R↗

i,i+1, and R̃↗

i,i+1, where the crossing
starts on the left of D+

i and ends on the right of D−

i+1, starts on the left of D−

i and ends on
the right of D+

i+1, starts on the left of D−

i and ends on the right of D−

i+1, starts on the left of
D+

i and ends on the right of D+

i+1, respectively.
The probabilities of the first and second events are bounded above by Pn−k , since they imply

a spatial crossing of D+

i ∪ D−

i+1, and a temporal crossing of the same rectangle, respectively.
Let us now bound P(R↗

i,i+1). Let R̃↖

i,i+1 denote the event that there exists a spatial crossing
of D starting on the left hand side of D+

i and ending on the right hand side of D+

i+1. Since
the event where there is a temporal crossing of D+

i ∪ D−

i+1 contains R↗

i,i+1 ∩ R↖

i,i+1, we find,
arguing similarly as in the proof of Lemma 4, that the probability of the former event bounds
from above P(R↗

i,i+1)2, and thus

P(R↗

i,i+1) ≤ P1/2
n−k .

We may similarly obtain the same bound for P(R̃↗

i,i+1).
Collecting all the above bounds, we get that

P(R) ≤ C2k P1/2
n−k, (6)

where R = ∪
2k

i=1 Ri is the event that there exists a spatial crossing of D starting on its left hand
side.

5.4. Proof of Proposition 6 — Recursion

We now use the previous estimates to set up a recursion for Pn — see (11) —, which readily
leads to the conclusion of our proof of Proposition 6, as subsequently explained, thus fulfilling
the third step of our strategy, as outlined at the end of the Introduction.

Consider first the probability of a temporal crossing of space–time rectangle [0, ⌊2nβ
⌋] ×

[0, 2n] where no point in [0, ⌊2nβ
⌋] has a 2n−k long interval in its timeline between times −2n−k

and 2n
+ 2n−k with no renewal marks in it; we speak of a 2n−k-gap in [−2n−k, 2n

+ 2n−k] in
this context. We can analyse the probability of a temporal crossing of [0, ⌊2nβ

⌋] × [0, 2n] via
the filtration of the Poisson processes/renewal processes.

More specifically we define G2i as the σ -field generated by these processes for all x ∈

[0, 2nβ] up to time 2i2n−k , while G2i+1 is the σ -field generated by G2i plus random variables
V 2i+1

x = inf{t ≥ 2i2n−k : t is in Rx }. We put Tn = inf{2i + 1 : ∃x ∈ [0, 2nβ] V 2i+1
x ≥

(2i + 1)2n−k
}. Tn is a stopping time for this filtration and

P(Tn ≤ 2k) ≤ K 2−n(α−1−β)
≡ K 2−nϵ0 , (7)

for some K depending only on k.
For i = 1, . . . , 2k , let G i denote the event that there exists a temporal crossing of the

rectangle [0, ⌊2nβ
⌋] × [i2n−k, (i + 1)2n−k], and let Ji denote the event that there is no 2n−k-gap

in [0, ⌊2nβ
⌋] × [i2n−k, (i + 1)2n−k].
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We then have

P
(
∃ a temporal crossing of [0, ⌊2nβ

⌋] × [0, 2n]
)

≤ P(Tn ≤ 2k) + P(G2)
2k−1∏
j=2

P(G2 j |G2, . . . , G2( j−1), J2 j−1). (8)

The probabilities inside the product on the right hand side of (8) can be written in terms of
an integral over conditional probabilities of G2 j given renewal histories up to the first renewal
mark (in chronological order) in each time line contained in [0, ⌊2nβ

⌋]×[(2 j −1) 2n−k, 2 j 2n−k]
— let us denote such renewal mark at the time line of x ∈ [0, ⌊2nβ

⌋] by (x, τ
j

x ) — and
Poissonian infection histories up to time (2 j − 1) 2n−k . Actually, that conditional probability
equals

P
(
G2|first renewal marks = {(x, τ j

x − (2 j − 1) 2n−k), x ∈ [0, ⌊2nβ
⌋]}

)
. (9)

Notice that the conditioning first renewal marks belong to timelines in [0, ⌊2nβ
⌋] × [0, 2n−k].

One now has that each one of these conditional probabilities satisfies the conditions of
Proposition 12, and so are (uniformly) bounded by the expression in (5), and thus so is the
integral, and clearly also P(G2). It follows that the right hand side of (8) is bounded above by

P(Tn ≤ 2k)+C( k)
(

P
1

10
n−k−1 ∨ P

1
10

n−k

)2k−1

≤ P(Tn ≤ 2k)+C ′( k) (Pn−k−1 ∨ Pn−k)
2 , (10)

if 2k−1 > 20.

Remark 4. If we had a gap in [0, ⌊2nβ
⌋] × [(2 j − 1) 2n−k, 2 j 2n−k], say in the timeline of

x ∈ [0, ⌊2nβ
⌋], then we would know that {x} × [(2 j − 1) 2n−k, 2 j 2n−k] had no renewal mark,

and the corresponding conditional probability would not be a renewal probability measure with
interarrival distribution µ starting at a given time, as prescribed in Definition 4. We would not
have a bound in terms of P·.

We note also that the alternating of G · and J· events in (8) allows for the validity of (9),
enabling the comparison to P·; on the other hand, we get the power of 2k−1 which boosts the
power of 1

10 to 2.

The estimation of the probability of a spatial crossing of a space–time rectangle [0, ⌊2nβ
⌋]×

[0, 2n] is similar, if easier. A spatial crossing of that rectangle starting from its left hand side
entails ⌊2kβ

⌋ crossings of ⌊2(n−k)β
⌋×2n rectangles starting from their respective left hand sides,

which is a collection of independent events, each of whose probabilities is bounded above by
the right hand side of (6), as argued in Section 5.3. Of course, the probability of the event of a
spatial crossing starting on the right hand side of [0, ⌊2nβ

⌋] × [0, 2n] satisfies the same bound.
We thus have that if 2(k−1)β > 4,

P(∃ a spatial crossing of [0, ⌊2nβ
⌋] × [0, 2n]) ≤ C(k) P2

n−k,

for some C(k) not depending on n.
Thus we can find k so that for all n large

Pn ≤ P(Tn ≤ 2k) + C ′′ (Pn−k−1 ∨ Pn−k)
2 , (11)

where C ′′ depends only on k. Here Pn represents the supremum over renewal probabilities on
[0, 2nβ] × [0, 2n] as in Definition 4.
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To complete the proof of Proposition 6 we note that it follows from (7) that if n is large,
then P(Tn ≤ 2k) ≤ 2−n

ϵ0
2 . Furthermore, for n0 an integer fixed large and j a strictly positive

integer, let H( j) be the statement

Pr ≤ 2−r
ϵ0
5 for each n0 ≤ r ≤ n0 + j(k + 1). (12)

If H( j) holds, then applying (11), Pn ≤ 2−n
ϵ0
2 + C ′′ (Pn−k−1 ∨ Pn−k)

2. Under H( j) this
is less than 2−n

ϵ0
2 + C ′′2−2(n−k−1) ϵ0

5 . If n0 was fixed sufficiently large this is ≤ 2−n
ϵ0
5 for

n = n0 + j(k + 1) + 1, n0 + j(k + 1) + 2, . . . , n0 + ( j + 1)(k + 1) − 1. We can now apply
this argument again for n = n0 + ( j + 1)(k + 1) and we have established the inductive
hypothesis that H( j) implies H( j + 1); if necessary making n0 larger, we further have that
P(Tn0+i ≤ 2k) ≤ 2−(n0+i) ϵ0

2 for 0 ≤ i ≤ k. We now choose λ0 so small that (12) holds for
j = 1 and λ ∈ (0, λ0).
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