期刊论文详细信息
STOCHASTIC PROCESSES AND THEIR APPLICATIONS 卷:129
Contact process under renewals I
Article
Fontes, Luiz Renato G.1  Marchetti, Domingos H. U.2  Mountford, Thomas S.3  Vares, Maria Eulalia4 
[1] Univ Sao Paulo, Inst Matemat & Estat, Sao Paulo, SP, Brazil
[2] Univ Sao Paulo, Inst Fis, Sao Paulo, SP, Brazil
[3] Ecole Polytech Fed Lausanne, Dept Math, CH-1015 Lausanne, Switzerland
[4] Univ Fed Rio de Janeiro, Inst Matemat, Rio De Janeiro, RJ, Brazil
关键词: Contact process;    Percolation;    Renewal process;   
DOI  :  10.1016/j.spa.2018.08.007
来源: Elsevier
PDF
【 摘 要 】

We investigate a non-Markovian analogue of the Harris contact process in Z(d): an individual is attached to each site x is an element of Z(d), and it can be infected or healthy; the infection propagates to healthy neighbours just as in the usual contact process, according to independent exponential times with a fixed rate lambda; nevertheless, the possible recovery times for an individual are given by the points of a renewal process with heavy tail; the renewal processes are assumed to be independent for different sites. We show that the resulting processes have a critical value equal to zero. (C) 2018 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_spa_2018_08_007.pdf 263KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次