期刊论文详细信息
JOURNAL OF CARDIAC FAILURE 卷:26
Wearable Patch-Based Estimation of Oxygen Uptake and Assessment of Clinical Status during Cardiopulmonary Exercise Testing in Patients With Heart Failure
Article
Shandhi, Md Mobashir Hasan1  Hersek, Sinan1  Fan, Joanna2  Sander, Erica2  De Marco, Teresa2  Heller, J. Alex3  Etemadi, Mozziyar3  Klein, Liviu2  Inan, Omer T.1 
[1] Georgia Inst Technol, Dept ECE, Atlanta, GA USA
[2] Univ Calif San Francisco, Sch Med, San Francisco, CA USA
[3] Northwestern Univ, Sch Med, Chicago, IL USA
关键词: Cardiopulmonary exercise test;    Cardiovascular monitoring;    Heart failure;    Seismocardiogram;    Wearable sensor;   
DOI  :  10.1016/j.cardfail.2020.05.014
来源: Elsevier
PDF
【 摘 要 】

Background: To estimate oxygen uptake (VO2) from cardiopulmonary exercise testing (CPX) using simultaneously recorded seismocardiogram (SCG) and electrocardiogram (ECG) signals captured with a small wearable patch. CPX is an important risk stratification tool for patients with heart failure (HF) owing to the prognostic value of the features derived from the gas exchange variables such as VO2. However, CPX requires specialized equipment, as well as trained professionals to conduct the study. Methods and Results: We have conducted a total of 68 CPX tests on 59 patients with HF with reduced ejection fraction (31% women, mean age 55 13 years, ejection fraction 0.27 +/- 0.11, 79% stage C). The patients were fitted with a wearable sensing patch and underwent treadmill CPX. We divided the dataset into a training-testing set (n = 44) anda separate validation set (n = 24). We developed globalized (population) regression models to estimate VO2 from the SCG and ECG signals measured continuously with the patch. We further classified the patients as stage D or C using the SCG and ECG features to assess the ability to detect clinical state from the wearable patch measurements alone. We developed the regression and classification model with cross-validation on the training-testing set and validated the models on the validation set. The regression model to estimate VO2 from the wearable features yielded a moderate correlation (R-2 of 0.64) with a root mean square error of 2.51 +/- 1.12 mL . kg-1 . min(-1) on the training-testing set, whereas R-2 and root mean square error on the validation set were 0.76 and 2.28 +/- 0.93 mL . kg(-1) . min(-1), respectively. Furthermore, the classification of clinical state yielded accuracy, sensitivity, specificity, and an area under the receiver operating characteristic curve values of 0.84, 0.91, 0.64, and 0.74, respectively, for the training-testing set, and 0.83, 0.86, 0.67, and 0.92, respectively, for the validation set. Conclusions: Wearable SCG and ECG can assess CPX VO2 and thereby classify clinical status for patients with HF. These methods may provide value in the risk stratification of patients with HF by tracking cardiopulmonary parameters and clinical status outside of specialized settings, potentially allowing for more frequent assessments to be performed during longitudinal monitoring and treatment.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cardfail_2020_05_014.pdf 1702KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:0次