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Background: To estimate oxygen uptake (VO2) from cardiopulmonary exercise testing (CPX) using

simultaneously recorded seismocardiogram (SCG) and electrocardiogram (ECG) signals captured with a

small wearable patch. CPX is an important risk stratification tool for patients with heart failure (HF) owing

to the prognostic value of the features derived from the gas exchange variables such as VO2. However,

CPX requires specialized equipment, as well as trained professionals to conduct the study.

Methods and Results: We have conducted a total of 68 CPX tests on 59 patients with HF with reduced

ejection fraction (31% women, mean age 55 § 13 years, ejection fraction 0.27 § 0.11, 79% stage C). The

patients were fitted with a wearable sensing patch and underwent treadmill CPX. We divided the dataset

into a training�testing set (n = 44) and a separate validation set (n = 24). We developed globalized (popula-

tion) regression models to estimate VO2 from the SCG and ECG signals measured continuously with the

patch. We further classified the patients as stage D or C using the SCG and ECG features to assess the abil-

ity to detect clinical state from the wearable patch measurements alone. We developed the regression and

classification model with cross-validation on the training�testing set and validated the models on the vali-

dation set. The regression model to estimate VO2 from the wearable features yielded a moderate correlation

(R2 of 0.64) with a root mean square error of 2.51 § 1.12 mL ¢ kg�1 ¢ min�1 on the training�testing set,

whereas R2 and root mean square error on the validation set were 0.76 and 2.28 § 0.93 mL ¢ kg�1 ¢ min�1,

respectively. Furthermore, the classification of clinical state yielded accuracy, sensitivity, specificity, and

an area under the receiver operating characteristic curve values of 0.84, 0.91, 0.64, and 0.74, respectively,

for the training�testing set, and 0.83, 0.86, 0.67, and 0.92, respectively, for the validation set.

Conclusions: Wearable SCG and ECG can assess CPX VO2 and thereby classify clinical status for patients with

HF. These methods may provide value in the risk stratification of patients with HF by tracking cardiopulmonary

parameters and clinical status outside of specialized settings, potentially allowing for more frequent assessments to

be performed during longitudinal monitoring and treatment. (J Cardiac Fail 2020;00:1�11)
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Wearable sensor.
A hallmark symptom of heart failure (HF) is exercise

intolerance which often manifests through exertional dys-

pnea and fatigue. The degree of exercise intolerance is cap-

tured by subjective assessments (New York Heart

Association functional class), quality of life questionnaires

(eg, Kansas City Cardiomyopathy Questionnaire,
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Minnesota Living with Heart Failure questionnaire), and/or

various objective exercise measures (eg, 6-minute walk dis-

tance). Cardiopulmonary exercise testing (CPX) is the most

comprehensive exercise test performed in clinical settings

to quantify the degree of myocardial impairment and pul-

monary dysfunction.1,2

CPX has also evolved as an important diagnostic and

prognostic tool to manage patients with HF by elucidating

mechanisms of exercise intolerance, quantifying disease

progression and facilitating recommendation for advanced

therapies, such as heart transplantation or ventricular assist

device implantation.1�4 Peak oxygen uptake (VO2), slope

of minute ventilation (VE) and carbon dioxide production

(VCO2) and VO2 at the anaerobic threshold are key CPX

parameters that are used for this risk stratification and dis-

ease status quantification. Although CPX is a valuable
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diagnostic and prognostic tool, it requires a specialized

environment and trained professionals to conduct the study.

Accordingly, although the information gained from CPX is

valuable for patient assessment and titration of care, longi-

tudinal CPX for patients with HF is cost prohibitive, incon-

venient, and thus not feasible on a large scale. Using novel

wearable technology, an unobtrusive and inexpensive alter-

native to the CPX, with the ability to potentially garner sim-

ilar information as CPX from daily activities in home

settings, could improve the remote monitoring and manage-

ment of patients with HF.

Recently, our team has developed a wearable device5 capa-

ble of measuring electrocardiogram (ECG) and seismocardio-

gram (SCG) signals and tested it in patients with HF.6 The

SCG represents the chest wall movements associated with the

movement of blood in the heart, and includes features repre-

senting the ejection of blood through the aorta.7 Our recent

studies have shown that clinical status—degree of myocardial

dysfunction and ability to augment cardiac output for patients

with HF—can be assessed using SCG after exercise via pre-

ejection period estimation and novel machine learning

methodology.6,8,9 However, although these results were prom-

ising, no group has demonstrated to date that an HF clinical

state can be accurately classified using wearable SCG and

ECG signals or that key parameters of cardiopulmonary func-

tion can be quantified from these signals.

In the current work, we recorded ECG and SCG signals

using an updated version of the previously validated wear-

able patch5 simultaneously with CPX for patients with HF

with reduced ejection fraction (HFrEF). We extracted
Fig. 1. Experimental setup with wearable patch hardware and represe
patient walking on a treadmill, with all the cardiopulmonary exercise test
(B) The wearable patch top and bottom view with snaps for electrocardio
ECG and triaxial SCG signals (head-to-foot [HtoF], dorsoventral [DV], a
multiple features from these wearable signals and estimated

VO2 continuously throughout the course of exercise using

state-of-the-art regression algorithms. We then classified

the clinical state of the patients based on the changes in

wearable signals associated with the exercise and compared

the accuracy of this classification against gold standard clin-

ical assessment based on CPX. Supplementary Fig. 1 shows

a hypothetical system for longitudinal monitoring of

patients with HF using our wearable patch.

Methods

Experimental Protocol

The study was conducted under a protocol reviewed and

approved by the University of California, San Francisco,

and the Georgia Institute of Technology Institutional

Review Boards. All patients provided written consent

before the procedure. We have conducted a total of 68 CPX

tests in 59 patients with HFrEF (with 9 patients having 2

CPX tests separated by 253 § 117 days). All of the patients

were recruited from the cardiopulmonary stress test labora-

tory at the University of California, San Francisco. Only

patients with HFrEF and a body mass index of less than 40

were considered for this study. We have separated the CPX

tests into 2 groups of 44 CPX for a training�testing set and

24 CPX for a separate validation set. The 24 CPX tests for

the validation set were obtained after the model was trained

on the training�testing set.

Fig. 1A illustrates the experimental setup and placement

of different sensors on each patient. Before starting the
ntative cardiogenic signals. (A) The experimental setup with the
ing measurement sensors and wearable patch attached to the body.
gram (ECG) electrodes and internal hardware. (C) Representative
nd lateral [LAT]) from 1 patient in the study.



ARTICLE IN PRESS

Wearable Patch-Based Estimation of Oxygen Uptake and Assessment of Clinical � Shandhi et al 3
procedure, normal skin preparation methods were adminis-

tered, and ECG leads were attached in a 12-lead ECG con-

figuration. A gas exchange mask (Medgraphics) was placed

on the patient. A finger pulse oximeter, a forehead pulse

oximeter, and a blood pressure cuff were placed and mini-

mal baseline spirometry data were collected to measure

forced and slow vital capacity. The custom-built wearable

device was placed just below the suprasternal notch. After

placing all the sensors, all wires were taped down such that

the patient could perform the protocol comfortably.

All CPX tests were performed on a treadmill (GE T2100)

per the American College of Cardiology/American Heart

Association Guidelines10 and following the modified

Naughton protocol.11 Tests were terminated owing to gen-

eral or leg fatigue, shortness of breath, angina, dizziness, or

electrocardiographic evidence of ischemia or arrhythmia.

Breath-by-breath measurements of respiratory rate, VE,

VO2, VCO2, partial pressure of oxygen, and partial pressure

of carbon dioxide were collected at rest, at zero grade low

speed walk, during exercise, and during recovery. Heart

rate (HR), rhythm, and oxygen saturations were continu-

ously monitored with intermittent sphygmomanometry.

ECG and SCG signals were obtained continuously using

the wearable patch.

As an outcome of the CPX tests, patients were classified

as American College of Cardiology/American Heart Asso-

ciation stage C HF (n = 54) or stage D HF (n = 14) based on

the recommendations from 2 HF physicians (TDM, LK),

following standard guidelines.10,12,13 Patients were classi-

fied as stage D HF if they were recommended for heart

transplant or ventricular assist device implant based on their

peak VO2 (<14 mL ¢ kg�1 ¢ min�1 or <50% predicted if

women or obese) and VE/VCO2 ratio (>38 if respiratory

exchange ratio was <1.05).

Sensing Hardware

Breath-by-breath data were collected using MGC Diag-

nostic/Medgraphics Ultima Series with Breeze suite

8.1.0.54 SP7 (software version number). ECGs (12-lead)

were collected using GE Case V6.72. Pulse oximetry was

measured using Radical 7 Masimo Rainbow Set.

For all patients, the wearable ECG and 3 axis SCG sig-

nals (head-to-foot [HtoF], dorsoventral [DV], and lateral

[LAT]) were collected with a novel wearable patch as

shown in Fig. 1B, which is an improvement on our previous

version described in.5 The patch has a diameter of 7 cm and

weight of 39 g. All the wearable signals were sampled at

1 kHz. Fig. 1C shows representative ECG and triaxial SCG

signals from the wearable patch. Fig. 2 illustrates the overall

workflow used in this work.

Data Analytics Techniques for Reducing Noise and

Extracting Features from the Wearable SCG and ECG

Signals

Whereas the CPX equipment captures breath-by-breath

VO2 data, the wearable patch captures one data point every
0.001 second (1 kHz sampling rate). A sliding window

approach was used to combine all of the values from the

SCG and ECG signals for the period in between breaths to

estimate a single VO2 value to compare against the gold

standard. At a high level, the approach to estimating VO2

was as follows: (1) the signals were preprocessed using our

existing data analytics algorithms for SCG and ECG signals

to decrease motion artifacts and other noise; (2) representa-

tive features, or signal characteristics, we hypothesized to

be relevant for VO2 estimation were extracted from the

SCG and ECG signals; and (3) regression models were

trained to mathematically estimate VO2 from these SCG

and ECG signal features for all CPX instances in the train-

ing�testing set and later validated in the validation set.

Preprocessing and Noise Reduction. All the signals

from the wearable patch were synchronized with the breath-

by-breath data from the CPX computer. The raw ECG and

SCG signals from the wearable patch were digitally filtered

(cut-off frequencies: 0.5�40.0 Hz for the ECG and

1�40 Hz for the SCG signals) to remove out-of-band noise.

After filtering, a fourth SCG signal (SCGT) was computed

using vector summation on the 3 axes of the SCG. All the

wearable signals were inspected for motion artifacts, and

portions of the signals corrupted by motion artifacts were

excluded from analysis. Details on the motion artifact

removal algorithm are provided in the Supplementary Mate-

rials.

The ECG R-wave peaks were detected using a simple

thresholding based peak detection method. The four SCG

signals (SCGHtoF, SCGLAT, SCGDV, and SCGT) were seg-

mented into individual heartbeats using the R-peaks from

the ECG signals. Each heartbeat was windowed to a 600-

ms duration from the R-peak. For each SCG signal, 10 con-

secutive heartbeats surrounding 1 VO2 measurement from

the CPX hardware were averaged time-point by time-point

to obtain an ensemble averaged heartbeat (Fig. 2). Ensem-

ble averaged heartbeats were computed across the whole

recording with a step size of 1 heartbeat. Ensemble aver-

aging was used to reduce noise and motion artifacts

within each heartbeat.14 This process resulted in a total

of 46,673 ensemble-averaged heartbeats from 44 CPX

instances in the training�testing set and 28,230 ensem-

ble-averaged heartbeats from 24 CPX instances in the

validation set. For each ECG signal, the R-to-R interval

and instantaneous HR were calculated for each heartbeat

and averaged in the same way as the ensemble averaged

waveforms.

The average VO2 measurements corresponding to each

ensemble averaged heartbeat were computed to be used as

the target variables for each ensemble averaged heartbeat

(ie, the output variables against which the regression model

was trained).

Feature Extraction. The next step toward estimating

VO2 from the measured signals involved extracting multi-

ple features—or characteristics—that could then be input to

a machine learning regression algorithm. A total of 17 fea-

tures were automatically extracted (details in the



Fig. 2. Overview of the regression and classification techniques. (A) Wearable ECG and seismocardiogram (SCG) (only showing 1 axis of
the signal for simplicity) signals were synchronized with breath-by-breath data from CPX computer. R-peaks of the ECG signal were
detected and the SCG signals were segmented into heartbeats using corresponding R-peaks. Ten heartbeat frames from the SCG signals
were averaged to get ensemble averaged heartbeats corresponds to 1 oxygen uptake (VO2) value from breath-by-breath data from CPX and
features were extracted from the averaged heartbeats. The features were fed into a random Forest regressor as estimators to estimate VO2.
Estimated VO2 was compared with actual VO2 to see the estimation accuracy. (b) The features from SCG and ECG were fed into a support
vector machine (SVM) classifier with radial basis function kernel to estimate the clinical state of a patient and it was compared with the
actual clinical state derived from CPX. Abbreviations as in Fig. 1.
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Supplementary Materials) from each of the four SCG sig-

nals resulting in a total of 68 SCG features per ensemble

averaged heartbeat. The feature extraction process was

visually verified for each of the ensemble averaged heart-

beats. The averaged R-to-R interval and instantaneous HR

for each averaged heartbeat were used as ECG features.

Before training, a regression model to estimate VO2, we

removed outlier beats from the ensemble averaged SCG

heartbeats using the Mahalanobis distance.15 Details on this

are provided in the Supplementary Material. The distance

calculated (based on the feature set used) for each frame

was added to the feature set and used for regression. The

signal processing and feature extraction were performed in

Matlab 2018a.
Regression and Classification

Regression Model. For each VO2 measurement

recorded by the CPX equipment, a corresponding set of fea-

tures from the SCG signals was derived using methods

described elsewhere in this article. A regression algorithm

was then designed and trained on the training set to mathe-

matically estimate VO2 from this set of features using part

of the recorded data as a training set and the remainder of

the data as a testing set. Specifically, we trained a random

Forest (RF)16 regression algorithm to estimate VO2 from

the wearable signal features and used leave-one-subject-out

(LOSO) cross-validation17 to evaluate the estimation accu-

racy. For all 44 CPX instances in the training�testing set,

at each fold—or iteration of the cross-validation process—a
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RF regression model was trained on the data from 43

patients (thus leaving 1 CPX instance out) to learn the rela-

tionship between features from the wearable sensors and

the target variable VO2. The resulting trained model was

then used to estimate corresponding VO2 values for the

heartbeat frames from the left out CPX instance. This pro-

cedure was repeated 43 more times, leaving a different

CPX instance out each time. This cross-validation method

was used to develop a global regression model with opti-

mized hyperparameters on the data in the training�testing

set only. For the validation of the global model, the regres-

sion model (with the optimized hyperparameters) was

trained on the whole training�testing set (all 44 CPX

instances) and tested on the separate validation set (with 24

CPX instances). As a result, we obtained predictions of all

target variables from all ensemble averaged heartbeats,

from all 68 CPX instances.

Two figures of merit that are commonly used in the exist-

ing literature were used to evaluate the regression model

and approach. First, the root mean squared error (RMSE)

was calculated for each left out CPX instance: specifically,

the error between the estimated VO2 values and the CPX

equipment measured VO2 values across all breaths. The

cross-validated RMSE was then calculated as the average

of the RMSE scores from 44 folds in the training�testing

set and 24 CPX instances in the validation set. Second, the

coefficient of determination (R2) between the true values

and the cross-validated predictions of VO2 across all CPX

instances were calculated for the training�testing set and

the validation set separately.

To assess the benefit of using a combined SCG/ECG

approach for predicting VO2, the RF regression approach

was repeated for 3 different feature sets: the SCG features

only, the ECG features only, and the combined SCG and

ECG features. We compared the resulting cross-validated

RMSE scores to assess the performance of each feature set

to estimate VO2. We performed statistical analysis on the

cross-validation results from the different feature sets.

To understand the value of the information provided by

SCG signals and our machine learning algorithm compared

with the ECG-derived HR for estimating instantaneous

VO2, we trained an RF regression model using SCG signal

features alone and a second model with HR alone using a

simple linear regression model as used in literature to inves-

tigate the VO2�HR relationship.18,19 We performed the

same LOSO cross-validation and calculated the cross-vali-

dated RMSE. We performed statistical analysis on the

cross-validation results to compare the SCG signal feature-

based model with the HR-based model.

Classification. In addition to estimating VO2 using

regression, we aimed to assess the ability to classify each

patient’s clinical status based on the wearable sensing data

measured during treadmill exercise using classification. We

used a machine learning classification technique to classify

the patients with HF as stage C or stage D on a particular

CPX procedure day using the wearable measurement alone

and compared the estimated class with the true class based
on the CPX outcome. Specifically, a support vector machine

classifier with a radial basis function kernel20,21 was used

and classification performance was evaluated using LOSO

cross-validation in the training�testing set and later vali-

dated on the separate validation set similarly as described in

the regression model section. Details on the preprocessing

of the wearable features for classifier are given in the Sup-

plementary Materials.

Similar to the regression analysis approach with the train-

ing�testing set, for the classification task the classifier was

trained on the features from 43 of the 44 CPX instances to

map the features into an output of stage C and D state. We

then used this classifier to predict the class of each heartbeat

frame for the left-out patient. The majority vote (ie, class)

of the heartbeats was chosen as the predicted class for the

patient on that particular CPX procedure day. We repeated

these steps 43 more times leaving a different CPX instance

out each time. In this way, we obtained a predicted class for

all CPX instances. Similarly, for the validation set, we

trained the classification model (with hyperparameters

tuned in the training�testing set of the classification task)

on all 44 CPX instances in the training�testing set and esti-

mated the class of each CPX instances in the validation set.

Finally, we compared the estimated class to the true class of

the patients from corresponding CPX outcome to calculate

classification performance for the training�testing and vali-

dation set separately. The machine learning techniques for

regression and classification were performed using Python

3.6.

Estimation of Peak VO2. Because the peak VO2 is

among the key parameters extracted from a CPX procedure

to assess the clinical status of the patients, we tried to see

how our regression model, which estimates instantaneous

VO2, can be used in estimating peak VO2 as well. The max-

imum of the estimated VO2 values for a particular CPX

instance was used as the estimated peak VO2 value for that

CPX and compared with the true measured peak VO2 from

corresponding CPX procedure, in a correlation and a

Bland�Altman analysis. We have calculated the percentage

error between estimated and true values of peak VO2 and

reported the average of the percentage error. We have used

values from all 68 CPX instances, including both the train-

ing�testing and the validation CPX instances.

Peak HR-Based Regression and Classification. To

understand the potential added value from SCG signals

and our machine learning approach beyond peak HR

alone, we have directly studied peak HR-based correla-

tion and classification for the same dataset. We per-

formed a simple correlation analysis (without any cross-

validation) between peak VO2 and peak HR. Further, we

also applied exactly the same methodology (regression

model with cross-validation) as for SCG-based peak

VO2 estimation and formed a model for estimating peak

VO2 from peak HR alone. In addition to the regression

analysis, we classified the patients based on peak HR

alone into stage C and stage D, in exactly the same

manner we applied to our SCG-based features.
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Statistical Analysis. We performed statistical analysis

on the cross-validated RMSE results to compare regression

results from different feature sets. Multiple comparison

tests were performed on the RMSE results from the cross-

validation. The Friedman test was performed to detect if

statistical differences exist and the Wilcoxon signed-rank

test was performed in post hoc testing for pairwise compari-

son. Additionally, for the post hoc testing, Benjami-

ni�Hochberg correction for multiple comparison was

performed on the P values. The demographics of patients in

stage C and stage D were compared using the Student t test.

In this work, P values of less than .05 were considered sta-

tistically significant.
Results

Patient demographics and clinical characteristics are

detailed in Table 1 and CPX characteristics are provided in

Table 2. A survival analysis using subsequent events (left

ventricular assisted device implantation, heart transplant, or

cardiovascular death) occurring over 6 months after the ini-

tial collection of data is provided in the Supplementary

Materials.
Table 1. Patient Demograph

All CPX Instances (N = 68)

Age, years 54.53 § 12.68
Sex
Male 47 (69%)
Female 21 (31)

Height, cm 172.4 § 9.14
Weight, kg 87.99 § 18.39
Body mass index, kg/m2 29.53 § 5.26
Ejection fraction,% 27.25 § 10.64
NYHA functional class
I 12 (13)
II 24 (30)
III 32 (57)

Orthopnea 17 (27)
Bilateral leg edema 12 (20)
Systolic blood pressure, mm Hg 105 § 15
Diastolic blood pressure, mm Hg 68 § 10
BNP, pg/mL 568.4 § 722.5 (23*)
NT-proBNP, pg/mL 1635.3 § 1671.2 (31*)
Serum creatinine, mg/dL 1.40 § 1.43 (60*)
Loop diuretics, furosemide, mg/d 83.7 § 93.4 (68)
b-Blockers, bisoprolol, mg/d 6.1 § 3.8 (94)
ACE inhibitors, lisinopril, mg/d 18.6 § 15.5 (10)
ARB, losartan, mg/d 54.8 § 30.4 (19)
ARNI, sacubitril�valsartan, mg/d 102.4 § 64.2 (58)
MRA, spironolactone, mg/d 29.8 § 16.7 (85)
Subsequent events (OHT/VAD/death)y 11 (16)

Values shown are mean § standard deviation or n (% of population) or mean §
significance between stage C and D patients in values, where applicable, was evalu

ACE, angiotensin converting enzyme; ARB, angiotensin receptor blocker; AR
uretic peptide; CPX, cardiopulmonary exercise testing; MRA, mineralocorticoid r
NYHA, New York Heart Association; OHT, orthotopic heart transplantation; VAD

*Number of CPX test instances with available laboratory results.
ySubsequent events were recorded up to 6 months after the completion of the st

tiple events (eg, VAD, followed by transplant later), only the first occurring event
Regression Model Comparison

Fig. 3A shows the correlation analysis between the actual

(measured) VO2 and the estimated VO2 using the combined

features from SCG and ECG for the training�testing set

and Fig. 4A shows the corresponding analysis for the vali-

dation set. For the training�testing set, the regression

model with the SCG features only performed better in esti-

mating VO2compared with the model using ECG features

only: RMSE of 2.55 § 1.16 mL ¢ kg�1 ¢ min�1 vs 3.75 §
1.68 mL ¢ kg�1 ¢ min�1, respectively (P< .001) and a corre-

sponding R2 of 0.63 vs 0.19. Combining SCG and ECG fea-

tures improved the estimation accuracy slightly compared

with SCG features only, but the improvement was not sig-

nificant (P> .05) with an RMSE of 2.50 § 1.12 mL ¢ kg�1 ¢
min�1 and an R2 of 0.64.

In the case of the validation set, similar results were

obtained using SCG and ECG features separately: RMSE of

2.28 § 1.04 mL ¢ kg�1 ¢ min�1 vs 3.52 § 1.5 mL ¢ kg�1 ¢
min�1, respectively (P < .001) and a corresponding R2 of

0.76 vs 0.36. Similarly, combining the SCG and ECG fea-

tures improved the estimation accuracy (RMSE of 2.28 §
0.93 mL ¢ kg�1 ¢ min�1 and R2 of 0.76) slightly compared

with SCG features only, although the improvement was not

significant (P> .05).
ics and Characteristics

Stage C (n = 54) Stage D (n = 14) P Value

54.81 § 12.88 53.43 § 12.28 .53

40 (74) 7 (50)
14 (26) 7 (50)
172.67 § 9.34 171.4 § 8.57 .59
87.57 § 17.96 89.59 § 20.63 .68
29.27 § 4.85 30.51 § 6.73 .37
26.21 § 9.29 31.29 § 14.46 .13

12 (18) 0 (0)
22 (36) 2 (0)
20 (45) 12 (100)
13 (27) 4 (27) .73
8 (18) 4 (27) .23
105 § 14 102 § 19 .41
68 § 9 68 § 15 .85
368 § 514 (17*) 1136.3 § 962.1 (6*) .02
1783.4 § 1687.7 (25*) 1018.5 § 1587.5 (6*) .35
1.49 § 1.61 (46*) 1.13 § 0.43 (14*) .38
64 § 71 (65) 146.4 § 128.1 (79) .01
5.9 § 3.9 (93) 6.7 § 3.7 (100) .54
18.6 § 15.5 (13) 0 (0)
61.1 § 30.9 (17) 40.6 § 27.7 (29) .28
101.2 § 64.8 (61) 107.7 § 65.5 (50) .91
29.3 § 15.5 (81) 31.6 § 20.7 (100) .64
7 (13) 4 (29) .16

standard deviation (% of population) unless otherwise indicated. Statistical
ated using an unpaired t test or a x2 test.
NI, angiotensin receptor blocker—neprilysin inhibitor; BNP, B-type natri-
eceptor antagonist; NT-proBNP, N-terminal pro b-type natriuretic peptide;
, ventricular assisted device implantation.

udy. In the cases where 1 cardiopulmonary exercise testing patient had mul-
was counted as subsequent events for a particular patient.



Table 2. Cardiopulmonary Exercise Test Responses

All CPX Instances (N = 68) Stage C (n = 54) Stage D (n = 14) P Value

Peak VO2, mL ¢ kg�1 ¢ min�1 15.58 § 4.82 17.21 § 3.92 9.32 § 1.93 <0.001
Percent predicted peak VO2, % 58 § 21 63 § 20 37 § 9 <0.001
VE/VCO2 slope 33.35 § 6.65 32.44 § 6.48 36.82 § 6.34 0.04
VO2 at anaerobic threshold, mL ¢ kg�1 ¢ min�1 11.79 § 3.95 (62*) 12.92 § 3.33 (50*) 7.08 § 2.69 (12*) <0.001
Peak oxygen pulse, mL/beat 12.02 § 3.68 12.91 § 3.47 8.59 § 2.24 <0.001
Peak respiratory exchange ratio 1.05 § 0.12 1.07 § 0.11 0.96 § 0.12 0.002
Exercise duration, seconds 672 § 235 743 § 200 401 § 148 <0.001
Peak heart rate, beats/min 120.06 § 23.8 124.57 § 22.79 102.64 § 19.77 0.002

CPX, cardiopulmonary exercise testing; VO2, oxygen uptake; VCO2, carbon dioxide production.
Values shown are mean§ standard deviation. Statistical significance between patients with stage C and stage D HF in values, where applicable, was evalu-

ated using an unpaired t test
*Number of CPX instances with detectable anaerobic threshold points, Modified V-slope method was used to detect the anaerobic threshold points.

Fig. 3. Regression and classification results on the training�testing set. (A) Correlation analysis between VO2 predicted vs VO2 actual for
the training and testing set. (B) The blue curve is showing the receiver operating characteristic (ROC) curve for the support vector machine
(SVM) classifier with radial basis function kernel for the training and testing set. The red line is the ROC curve for classification based on
random chance. The area under the blue ROC curve (AUC) is 0.74. Abbreviations as in Figs. 1 and 2.

Fig. 4. Regression and classification results on the validation set. (A) Correlation analysis between VO2 predicted vs VO2 actual for the val-
idation set. (B) The blue curve is showing the ROC curve for the SVM classifier with radial basis function kernel for the validation set. The
red line is the ROC curve for classification based on random chance. The AUC of the blue ROC curve is 0.92. Abbreviations as in Figs. 2
and 3.
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In the case of comparing SCG features with ECG-derived

HR in estimating instantaneous VO2, SCG features resulted

in a significantly higher R2 of 0.63 compared with 0.31

using HR only for the training�testing set (P< .05), and

correspondingly 0.76 compared with 0.25 using HR only in
the validation set (P < .05). The corresponding RMSE val-

ues were 2.55 § 1.16 (SCG) vs 3.58 § 1.54 mL ¢ kg�1 ¢
min�1 (HR) for the training�testing set and 2.28 § 1.04

(SCG) vs 3.66 § 1.74 mL ¢ kg�1 ¢ min�1 (HR) for the vali-

dation set.



Table 3. Confusion Matrix for Classification on the
Training�Testing Set (n = 44)

Predicted Stage C Predicted Stage D

Actual stage C 30 (TP) 3 (FN) 33
Actual stage D 4 (FP) 7 (TN) 11

34 10

FN, false negative; FP, false positive; TP, true positive; TN, true negative.
Accuracy = 0.84; sensitivity = 0.91; specificity = 0.64; positive predic-

tive value = 0.88; negative predictive value = 0.7.

Table 4. Confusion Matrix for Classification on the Validation
Set (n = 24)

Predicted Stage C Predicted Stage D

Actual stage C 18 (TP) 3 (FN) 21
Actual stage D 1 (FP) 2 (TN) 3

19 5

Accuracy = 0.83; sensitivity = 0.86; specificity = 0.67; positive predic-
tive value = 0.95; negative predictive value = 0.4.

Abbreviations as in Table 3.
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Classification

Table 3 and Table 4 show the classification results using

the support vector machine with a radial basis function ker-

nel for the training�testing and validation sets, respec-

tively. Accuracy, sensitivity, and specificity obtained for

the training�testing set were 0.84, 0.91, and 0.64, respec-

tively, whereas for the validation set, they were 0.83, 0.86,

and 0.67 respectively. Fig. 3B and Fig. 4B show the

receiver operating characteristics curve of the classifier

with an area under the curve of 0.74 and 0.92 for the train-

ing�testing and validation sets, respectively.
Peak VO2 Estimation

Fig. 5 shows the correlation analysis and Bland�Altman

analysis between measured and estimated peak VO2 values

using SCG and ECG features for all 68 CPX instances, with

a percentage error of 20.74% and an R2 of 0.5.
Fig. 5. Results of peak VO2 estimation. (A) Correlation analysis and (B
peak VO2 for all 68 CPX instances used in the study. Abbreviations as in
Peak HR-Based Regression and Classification

The correlation analysis between the peak VO2 and the

peak HR resulted in an R2 of 0.23 for all 68 CPX instances.

In contrast, estimation of the peak VO2 using the peak HR

using the same regression model and LOSO cross-valida-

tion approach used with SCG features resulted in an R2 of

0.19 between the measured and estimated peak VO2 values

for all 68 CPX instances. The Bland�Altman confidence

interval was calculated to be 17.1 mL ¢ kg�1 ¢ min�1 in this

case. In the case of classifying the patients based on peak

HR alone into stage C and stage D HF, the resultant area

under the curve values for the receiver operating character-

istics curve were 0.59 for the training�testing set and 0.54

for the validation set.
Discussion

With this proof-of-concept study, we have shown the

potential of a small, lightweight, wearable patch capable of

measuring SCG and ECG to estimate beat-by-beat VO2

estimation throughout a standard CPX procedure. Our

results have shown that features from the wearable patch

may capture the changes in cardiopulmonary demand dur-

ing exercise and may be used to differentiate between stage

C and stage D HFrEF. These promising initial results pro-

vide a foundation for determining cardiopulmonary varia-

bles and clinical status of patients with HF in their daily life

and activities using wearable sensors. With further research,

this approach could enable remote monitoring of these

patients outside clinical settings.

An important finding in this work was that the features

from the SCG signal were more salient in estimating VO2

as compared with the ECG signal. Many Holter-type

patches are currently available for ECG measurement, and

have been used in studies for monitoring patients with

HF.22,23 Additionally, smartwatches are commercially

available and can measure HR and possibly HR variability

(provided there is minimal motion artifact). Although such

commercially available tools are convenient and readily

applicable to studies in patients with HF, the results from
) Bland�Altman analysis between predicted peak VO2 vs actual
Figs. 1 and 2.
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this article demonstrate that HR-based features may not pro-

vide sufficient value in assessing cardiopulmonary health in

patients with HF during exercise. Rather, approaches using

a combination of ECG- and SCG-based sensing are needed

such that VO2 and a patient’s clinical status can be accu-

rately determined during exercise. This result is consistent

with our prior work where changes in the SCG signal in

response to a 6-minute walk test were found to be more

salient in assessing clinical state for patients with HF than

ECG or HR features alone.6

Another important, and perhaps surprising, finding in this

work is that the signal quality of the SCG signals measured

during treadmill exercise in patients with low signal levels

overall (patients with HF) was sufficiently high to enable

accurate estimation of VO2. The 2 main factors allowing

such high signal quality to be obtained during exercise from

a signal that has typically been limited to low motion/vibra-

tion environments only were the following: (1) the

improved wearable patch we have developed that was used

in this work employs the lowest noise microelectromechani-

cal system accelerometer available, with a noise floor that is

2.5 times lower than any other microelectromechanical sys-

tem accelerometer used in prior studies to the best of our

knowledge; and (2) the direct coupling of the patch to the

chest wall at the sternum with a triangular configuration of

ECG electrodes provides a rigid and robust mechanical

interface to the body from which SCG signals can be reli-

ably recorded, even in the presence of motion artifacts.

Thus, the results of this work may form a foundation upon

which future efforts focused on assessing the mechanical

aspects of left ventricular function during movement can be

designed and realized.

From the result with peak VO2 estimation, it is apparent

that the model underestimated and overestimated peak VO2

for very high and low values of measured peak VO2, respec-

tively. This limitation is well-known in machine learning-

based models, because it will try to produce results close to

the overall mean of the distribution rather than extreme val-

ues. Increasing the number of patients with a broader spec-

trum of exercise capabilities may decrease the estimation

accuracy for the extreme peak VO2 values in future studies.

Also, a point to note here is that the regression model pre-

sented here was trained to learn the underlying relationship

of SCG and ECG features with beat-by-beat VO2, not only

peak VO2. Maximal effort covers only a small portion of

the CPX protocol. This can be attributed to the compara-

tively lower performance of peak VO2 estimation in our

analysis compared with the estimation of the beat-by-beat

estimation of VO2.

Although the measurement of VO2 values at less than

peak may not currently be clinically relevant, one can imag-

ine that with the capability of estimating VO2 accurately for

submaximal exercise tasks, such as walking upstairs or out-

doors, the ability to assess patients with HF outside of clini-

cal settings may be enhanced. Thus, in future clinical care

scenarios where digital data collection methodologies are

being leveraged, the measurement of VO2 in submaximal
tasks could potentially become an important and clinically

relevant capability.

Comparing the results of peak VO2 estimation using our

method with peak HR-based method demonstrates that aug-

menting HR with cardiomechanical features may result in a

higher correlation coefficient and smaller confidence inter-

val for estimating peak VO2. The SCG signal features

resulted in more robust classification performance for sepa-

rating patients with stage C and D HF as well. Future work

should focus on improving the estimation accuracy of peak

VO2 from wearable SCG and ECG signals.

The peak VO2 was used along with the VE/VCO2 ratio to

determine the severity of HF (stage C and D) in these

patients. In our regression analysis, the algorithm was

trained to learn the underlying features of the SCG and

ECG signals to estimate instantaneous VO2 throughout the

CPX protocol, whereas the classification algorithm was

trained to learn the underlying features of the SCG and

ECG signals to determine the severity (stage C vs stage D)

of HF for these patients. The regression model can be used

to estimate VO2 during submaximal exercise levels as well

as maximal effort, whereas classification tasks can give 1

label to the whole CPX test. These preliminary findings,

however, need verification in a larger patient population

with a variety of exercise levels. Because peak VO2 played

a key role in determining the true class of the patients, there

can be some common SCG and ECG features that were

used by both regression and classification models. Future

work should examine both SCG and ECG features from

both maximal and submaximal exercise to relate to the

severity of HF and investigate the underlying physiological

relationship between them.

It should also be noted that, although the regression and

classification approaches used in this work are “black box,”

as is the case for any machine learning technique, the rela-

tive importance of SCG frequency domain features vs

ECG-HR features does provide some insight into possible

physiologic mechanisms behind the relationship between

SCG signals and VO2. Specifically, the changes in the fre-

quency domain characteristics of the signals might suggest

the presence of nonlinearity (ie, harmonics) in the vibra-

tions of the chest in response to the heartbeat at higher lev-

els of exercise and VO2. Another potential mechanistic link

could be in the relationship between some frequencies of

the SCG signal and stroke volume, which is an important

factor constituting VO2. Nevertheless, these mechanistic

links are conjecture at this point and should be investigated

in the future using studies with direct hemodynamic meas-

urements (eg, right heart catheterization) taken simulta-

neously with SCG signals to characterize the origin and

characteristics of the signal in the context of left ventricular

function and health.

This study also has several limitations that should be

noted. Our dataset had only 21% patients with stage D HF

(25% in the training�testing set and 13% in the validation

set), resulting in higher peak VO2 for patients with stage D

HF. For a few cases of patients with stage C HF with a very
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high peak VO2compared with the rest of the population, our

model underestimated their VO2 and corresponding peak

VO2 estimation. In future studies, we will increase the num-

ber of patients and incorporate patients with a broader spec-

trum of exercise capabilities, which may decrease the

estimation error for these extreme cases. Similarly, our clas-

sification model classified 30 of 33 stage C CPX instances

accurately, whereas 7 of 11 stage D CPX instances were

accurately classified in the training�testing set. For the val-

idation set, it classified 18 of 21 stage C CPX instances

accurately, whereas 2 of 3 stage D CPX instances were

accurately classified. The comparatively poor performance

in the classification of patients with stage D HF can be asso-

ciated with a smaller number of patients with stage D HF

(n = 14) in our dataset, the shorter duration of exercise com-

pared with patients with stage C HF, and greater pathophys-

iologic differences among patients owing to various HF-

related diseases. Increasing the number of patients with

stage D HF in future studies should increase the classifica-

tion accuracy for patients with stage D HF as well.

This preliminary study demonstrated the potential of

using advanced machine learning algorithms to estimate

continuous VO2 throughout the CPX procedure and clinical

status of patients with HF, both in a training�testing set

and a separate validation set. Results in the validation set

were comparatively better than the training�testing set.

One reason can be that our validation set had fewer patients

with stage D HF by chance compared with the train-

ing�testing set, and our model performed well for the

patients with stage C HF because it has more patients with

stage C HF to learn from in the training phase. Incorporat-

ing more patients with stage D HF in future studies should

verify these initial findings in a large set of population pool.

In this work, we have only estimated VO2. Future work

should focus on estimating other gas exchange variables

(eg, VCO2, VE, and tidal volume) from the CPX and to

investigate the underlying mechanisms. Additionally, we

have collected data only from patients with HFrEF. Future

studies can assess the efficacy of this sensor in patients with

HF with preserved ejection fraction. In addition, these tests

were performed in a controlled clinical setting with trained

professionals. The data from home or an unsupervised set-

ting may be of lower quality compared with the data

obtained here. Future studies can elucidate whether wear-

able SCG and ECG parameters measured during normal

activities of daily living can be predictive of the parameters

measured during extensive CPX.
Conclusions

We have demonstrated that a wearable chest patch-based

sensor capable of recording ECG and SCG may be used to

estimate VO2 from CPX for patients with HF using a global

regression model and may facilitate determination of clini-

cal state of the patient. We thus demonstrated that wearable

sensors can potentially be used to monitor cardiopulmonary

health and to stratify disease risk for patients with HF. The
approach described in this work may thus provide the capa-

bility to perform longitudinal CPX testing for patients with

HF in clinical and hospital settings such that treatment and

management can be titrated and personalized based on

physiologic state. Because CPX testing has been established

as a valuable technique in assessing patient state for HF,

broadening the ability to perform such testing in longitudi-

nal patient management may improve the quality of care

and life for patients with HF. Future studies should verify

these preliminary findings in a larger patient population

with a wider spectrum of exercises, in both a clinical envi-

ronment and normal daily living activities.

Clinical Perspectives

Wearable technologies have the potential to allow moni-

toring of patients with HF in the ambulatory setting. In this

work, we have shown that a wearable patch can estimate

oxygen consumption during cardiopulmonary stress testing

and can assist in the stratification of patients with HF based

on the severity of their disease. Future work will investigate

tracking physiologic changes and responses to interventions

during daily activities at home in this patient population.
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