期刊论文详细信息
BMC Bioinformatics
Solving the molecular distance geometry problem with inaccurate distance data
Methodology Article
Michael Souza1  Albert Muritiba1  Nelson Maculan2  Carlile Lavor3 
[1] Department of Statistics and Applied Mathematics, Federal University of Ceará, 60455-760, Ceará, Brazil;Institute Alberto Luiz Coimbra, Federal University of Rio de Janeiro, 21941-972, Rio de Janeiro, Brazil;Institute of Mathematics, Statistics and Scientific Computing, University of Campinas, 13083-859, Campinas, Brazil;
关键词: Nuclear Magnetic Resonance;    Protein Data Bank;    Nuclear Magnetic Resonance Experiment;    Nuclear Magnetic Resonance Technique;    Neighboring Residue;   
DOI  :  10.1186/1471-2105-14-S9-S7
来源: Springer
PDF
【 摘 要 】

We present a new iterative algorithm for the molecular distance geometry problem with inaccurate and sparse data, which is based on the solution of linear systems, maximum cliques, and a minimization of nonlinear least-squares function. Computational results with real protein structures are presented in order to validate our approach.

【 授权许可】

CC BY   
© Souza et al.; licensee BioMed Central Ltd. 2013

【 预 览 】
附件列表
Files Size Format View
RO202311106058780ZK.pdf 445KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  文献评价指标  
  下载次数:4次 浏览次数:0次