学位论文详细信息
On Magic State Distillation using Nuclear Magnetic Resonance
Nuclear Magnetic Resonance;Quantum Information Processing;Magic State Distillation;Quantum Computing;Fault Tolerance;State Purification;Physics
Hubbard, Adam A.
University of Waterloo
关键词: Nuclear Magnetic Resonance;    Quantum Information Processing;    Magic State Distillation;    Quantum Computing;    Fault Tolerance;    State Purification;    Physics;   
Others  :  https://uwspace.uwaterloo.ca/bitstream/10012/3554/1/ah_thesis_corrected.pdf
瑞士|英语
来源: UWSPACE Waterloo Institutional Repository
PDF
【 摘 要 】

Physical implementations of quantum computers will inevitably be subject to errors. However, provided that the error rate is below some threshold, it is theoretically possible to build fault tolerant quantum computers that are arbitrarily reliable.A particularly attractive fault tolerant proposal, due to its high threshold value, relies on Clifford group quantum computation and access to ancilla qubits.These ancilla qubitsmust be prepared in a particular state termed the ;;magic;; state.It is possible to distill faulty magic states into pure magic states, which is of significant interest for experimental work where perfect state preparation is generally not possible. This thesis describes a liquid state nuclear magnetic resonance based scheme for distilling magic states.Simulations are presented that indicate that such a distillation is feasible if a high level of experimental control is achieved.Preliminary experimental results are reported that outline the challenges that must be overcome to attain such precise control.

【 预 览 】
附件列表
Files Size Format View
On Magic State Distillation using Nuclear Magnetic Resonance 2669KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:41次