期刊论文详细信息
Journal of Translational Medicine
Circulating miR-133a-3p defines a low-risk subphenotype in patients with heart failure and central sleep apnea: a decision tree machine learning approach
Research
Pablo Martinez-Camblor1  Josephine Labus2  Christiane E. Angermann3  Martin R. Cowie4  Wolfgang Koenig5  Kevin Duarte6  Isabelle Riedel7  Andrea Korte7  Thomas Thum8  Christian Bär8  Thalia Belmonte9  Ferran Barbé9  David de Gonzalo-Calvo9  Faiez Zannad1,10 
[1] Anesthesiology Department, Geisel School of Medicine at Dartmouth, Hanover, NH, USA;Faculty of Health Sciences, Universidad Autonoma de Chile, Providencia, Chile;Cellular Neurophysiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany;Comprehensive Heart Failure Center, University and University Hospital Würzburg, Würzburg, Germany;Department of Medicine I, University Hospital Würzburg, Würzburg, Germany;Department of Cardiology, Royal Brompton Hospital (Guy’s & St Thomas’s NHS Foundation Trust), London, UK;Deutsches Herzzentrum München, Technische Universität München, Munich, Germany;German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany;Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany;INSERM 1433, CHRU de Nancy, Centre d’Investigations Cliniques Plurithématique, Institut Lorrain du Cœur et des Vaisseaux, Université de Lorraine, Nancy, France;Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany;Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany;Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Str. 1, 30625, Hannover, Germany;Translational Research in Respiratory Medicine, IRBLleida, University Hospital Arnau de Vilanova and Santa Maria, Lleida, Spain;CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain;Université de Lorraine, Inserm, Centre d’Investigations Cliniques-Plurithématique 1433, Inserm U1116, CHRU Nancy, F-CRIN INI-CRCT Network, Nancy, France;
关键词: Biomarker;    Central sleep apnea;    Decision tree learning;    Heart failure;    Machine learning;    microRNA;    Reduced ejection fraction;    SERVE-HF;   
DOI  :  10.1186/s12967-023-04558-w
 received in 2023-04-11, accepted in 2023-09-22,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

BackgroundPatients with heart failure with reduced ejection fraction (HFrEF) and central sleep apnea (CSA) are at a very high risk of fatal outcomes.ObjectiveTo test whether the circulating miRNome provides additional information for risk stratification on top of clinical predictors in patients with HFrEF and CSA.MethodsThe study included patients with HFrEF and CSA from the SERVE-HF trial. A three-step protocol was applied: microRNA (miRNA) screening (n = 20), technical validation (n = 60), and biological validation (n = 587). The primary outcome was either death from any cause, lifesaving cardiovascular intervention, or unplanned hospitalization for worsening of heart failure, whatever occurred first. MiRNA quantification was performed in plasma samples using miRNA sequencing and RT-qPCR.ResultsCirculating miR-133a-3p levels were inversely associated with the primary study outcome. Nonetheless, miR-133a-3p did not improve a previously established clinical prognostic model in terms of discrimination or reclassification. A customized regression tree model constructed using the Classification and Regression Tree (CART) algorithm identified eight patient subphenotypes with specific risk patterns based on clinical and molecular characteristics. MiR-133a-3p entered the regression tree defining the group at the lowest risk; patients with log(NT-proBNP) ≤ 6 pg/mL (miR-133a-3p levels above 1.5 arbitrary units). The overall predictive capacity of suffering the event was highly stable over the follow-up (from 0.735 to 0.767).ConclusionsThe combination of clinical information, circulating miRNAs, and decision tree learning allows the identification of specific risk subphenotypes in patients with HFrEF and CSA.

【 授权许可】

CC BY   
© BioMed Central Ltd., part of Springer Nature 2023

【 预 览 】
附件列表
Files Size Format View
RO202311103613820ZK.pdf 1647KB PDF download
12944_2017_533_Article_IEq2.gif 1KB Image download
Fig. 1 723KB Image download
12888_2023_5299_Article_IEq1.gif 1KB Image download
Fig. 6 393KB Image download
MediaObjects/12888_2023_5209_MOESM2_ESM.docx 29KB Other download
MediaObjects/12888_2023_5209_MOESM3_ESM.zip 248KB Package download
【 图 表 】

Fig. 6

12888_2023_5299_Article_IEq1.gif

Fig. 1

12944_2017_533_Article_IEq2.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  文献评价指标  
  下载次数:1次 浏览次数:0次