BMC Veterinary Research | |
Effect of engineered TiO2and ZnO nanoparticles on erythrocytes, platelet-rich plasma and giant unilamelar phospholipid vesicles | |
Research Article | |
Metka Šimundić1  Veronika Kralj-Iglič2  Roman Štukelj2  Henry Hägerstrand3  Barbara Drašler4  Damjana Drobne4  Jernej Zupanc4  Deniz Erdogmus5  Darko Makovec6  Vid Šuštar7  | |
[1] Biomedical Research Group, Faculty of Health Sciences, University of Ljubljana and Prva-K Klinika za male živali d.o.o. (Prva-K Clinic for Small Animals), Ljubljana, Slovenia;Biomedical Research Group, Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia;Department of Biology, Abo Akademi University, Abo/Turku, Finland;Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia;Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA;J Stefan Institute, Ljubljana, Slovenia;Laboratory of Clinical Biophysics, Chair of Orthopaedics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; | |
关键词: Engineered nanoparticles; Erythrocyte shape; Platelet activation; Thrombosis; Cancer; Dog; Phospholipid vesicles; Biological membrane; Titanium; Zinc oxide; | |
DOI : 10.1186/1746-6148-9-7 | |
received in 2012-09-11, accepted in 2013-01-08, 发布年份 2013 | |
来源: Springer | |
【 摘 要 】
BackgroundMassive industrial production of engineered nanoparticles poses questions about health risks to living beings. In order to understand the underlying mechanisms, we studied the effects of TiO2 and ZnO agglomerated engineered nanoparticles (EPs) on erythrocytes, platelet-rich plasma and on suspensions of giant unilamelar phospholipid vesicles.ResultsWashed erythrocytes, platelet-rich plasma and suspensions of giant unilamelar phospholipid vesicles were incubated with samples of EPs. These samples were observed by different microscopic techniques. We found that TiO2 and ZnO EPs adhered to the membrane of washed human and canine erythrocytes. TiO2 and ZnO EPs induced coalescence of human erythrocytes. Addition of TiO2 and ZnO EPs to platelet-rich plasma caused activation of human platelets after 24 hours and 3 hours, respectively, while in canine erythrocytes, activation of platelets due to ZnO EPs occurred already after 1 hour. To assess the effect of EPs on a representative sample of giant unilamelar phospholipid vesicles, analysis of the recorded populations was improved by applying the principles of statistical physics. TiO2 EPs did not induce any notable effect on giant unilamelar phospholipid vesicles within 50 minutes of incubation, while ZnO EPs induced a decrease in the number of giant unilamelar phospholipid vesicles that was statistically significant (p < 0,001) already after 20 minutes of incubation.ConclusionsThese results indicate that TiO2 and ZnO EPs cause erythrocyte aggregation and could be potentially prothrombogenic, while ZnO could also cause membrane rupture.
【 授权许可】
Unknown
© Šimundić et al.; licensee BioMed Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202311103217900ZK.pdf | 3969KB | download |
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
- [40]
- [41]
- [42]
- [43]
- [44]
- [45]
- [46]
- [47]
- [48]
- [49]
- [50]
- [51]
- [52]
- [53]
- [54]
- [55]
- [56]
- [57]
- [58]