期刊论文详细信息
BMC Veterinary Research
Effect of engineered TiO2 and ZnO nanoparticles on erythrocytes, platelet-rich plasma and giant unilamelar phospholipid vesicles
Veronika Kralj-Iglič3  Damjana Drobne4  Henry Hägerstrand1  Deniz Erdogmus7  Darko Makovec2  Roman Štukelj3  Jernej Zupanc4  Vid Šuštar5  Barbara Drašler4  Metka Šimundić6 
[1] Department of Biology, Abo Akademi University, Abo/Turku, Finland;J Stefan Institute, Ljubljana, Slovenia;Biomedical Research Group, Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia;Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia;Laboratory of Clinical Biophysics, Chair of Orthopaedics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia;Biomedical Research Group, Faculty of Health Sciences, University of Ljubljana and Prva-K Klinika za male živali d.o.o. (Prva-K Clinic for Small Animals), Ljubljana, Slovenia;Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA
关键词: Zinc oxide;    Titanium;    Biological membrane;    Phospholipid vesicles;    Dog;    Cancer;    Thrombosis;    Platelet activation;    Erythrocyte shape;    Engineered nanoparticles;   
Others  :  1119631
DOI  :  10.1186/1746-6148-9-7
 received in 2012-09-11, accepted in 2013-01-08,  发布年份 2013
PDF
【 摘 要 】

Background

Massive industrial production of engineered nanoparticles poses questions about health risks to living beings. In order to understand the underlying mechanisms, we studied the effects of TiO2 and ZnO agglomerated engineered nanoparticles (EPs) on erythrocytes, platelet-rich plasma and on suspensions of giant unilamelar phospholipid vesicles.

Results

Washed erythrocytes, platelet-rich plasma and suspensions of giant unilamelar phospholipid vesicles were incubated with samples of EPs. These samples were observed by different microscopic techniques. We found that TiO2 and ZnO EPs adhered to the membrane of washed human and canine erythrocytes. TiO2 and ZnO EPs induced coalescence of human erythrocytes. Addition of TiO2 and ZnO EPs to platelet-rich plasma caused activation of human platelets after 24 hours and 3 hours, respectively, while in canine erythrocytes, activation of platelets due to ZnO EPs occurred already after 1 hour. To assess the effect of EPs on a representative sample of giant unilamelar phospholipid vesicles, analysis of the recorded populations was improved by applying the principles of statistical physics. TiO2 EPs did not induce any notable effect on giant unilamelar phospholipid vesicles within 50 minutes of incubation, while ZnO EPs induced a decrease in the number of giant unilamelar phospholipid vesicles that was statistically significant (p < 0,001) already after 20 minutes of incubation.

Conclusions

These results indicate that TiO2 and ZnO EPs cause erythrocyte aggregation and could be potentially prothrombogenic, while ZnO could also cause membrane rupture.

【 授权许可】

   
2013 Šimundić et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150208090743542.pdf 2260KB PDF download
Figure 8. 137KB Image download
Figure 7. 94KB Image download
Figure 6. 136KB Image download
Figure 5. 204KB Image download
Figure 4. 133KB Image download
Figure 3. 86KB Image download
Figure 2. 38KB Image download
Figure 1. 96KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Colvin V: The potential environmental impact of engineered nanomaterials. Nat Biotechnol 2003, 13:1166-1170.
  • [2]Oberdorster G, Oberdorster E, Oberdorster J: Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ Health Persp 2005, 113:823-839.
  • [3]Iavicoli I, Leso V, Fontana L, Bergamaschi A: Toxicological effects of titanium dioxide nanoparticles: a review of in vitro mammalian studies. Eur Rev Med Pharmaco 2011, 15:481-508.
  • [4]Reijnders L: Human health hazards of persistent inorganic and carbon nanoparticles. J Mater Sci 2012, 47:5061-5073.
  • [5]Yeates DB, Mauderly JL: Inhaled environmental/occupation irritants and allergens: mechanisms of cardiovascular and systemic responses: introduction. Environ Health Persp 2001, 109:479-481.
  • [6]Böckmann J, Lahl H, Eckert T, Unterhalt B: Blood titanium levels before and after oral administration of titanium dioxide. Pharmazie 2000, 55:140-143.
  • [7]Robert MU, Tomlinson MJ, Hall DJ, Jacobs JJ: Accumulation in liver and spleen of metal particles generated at non-bearing surfaces in hip arthroplasty. J Arthroplasty 2004, 19:94-101.
  • [8]Manivasagam G, Dhinasekaran D, Rajamanickam A: Biomedical implants: Corrosion and its prevention – a rewiev. Recent Pat Corrosion Sci 2010, 2:40-54.
  • [9]Yallapu MM, Jaggi M, Chauhan SC: Scope of nanotechnology in ovarian cancer therapeutics. J Ovarian Res 2010, 3:19. BioMed Central Full Text
  • [10]Chen Y, Wan Y, Wang Y, Zhang H, Jiao Z: Anticancer efficacy enhancement and attenuation of side effects of doxorubicin with titanium dioxide nanoparticles. Int J Nanomed 2011, 6:2321-2326.
  • [11]Türkez H, Geyikoglu F: An in vitro blood culture for evaluating the genotoxicity of titanium dioxide: the responses of antioxidant enzymes. Toxicol Ind Health 2007, 23:19-23.
  • [12]Roiter Y, Ornatska M, Rammohan AR, Balakrishnan J, Heine DR, Minko S: Interaction of nanoparticles with lipid membrane. Nano Lett 2008, 8(3):941-944.
  • [13]Kang SJ, Kim BM, Lee YJ, Chung HW: Titanium dioxide nanoparticles trigger p53-mediated damage response in peripheral blood lymphocytes. Environ Mol Mutagen 2008, 49:399-405.
  • [14]Dawson KA, Salvati A, Lynch I: Nanotoxicology: nanoparticles reconstruct lipids. Nat Nanotechnol 2009, 4:84-85.
  • [15]Hussain S, Boland S, Baeza-Squiban A, Hamel R, Thomassen LC, Martens JA, Billon-Galland MA, Fleury-Feith J, Moisan F, Pairon JC, Marano F: Oxidative stress and proinflammatory effects of carbon black and titanium dioxide nanoparticles: Role of particle surface area and internalized amount. Toxicology 2009, 260:142-149.
  • [16]Corbalan JJ, Medina C, Jacoby A, Malinski T, Radomski MW: Amorphous silica nanoparticles trigger nitric oxide/peroxynitrite imbalance in human endothelial cells: inflammatory and cytotoxic effects. Int J Nanomed 2011, 6:2821-2835.
  • [17]Yoo KC, Yoon CH, Kwon D, Hyun KH, Woo SJ, Kim RK, Lim EJ, Suh Y, Kim MJ, Yoon TH, Lee SJ: Titanium dioxide induces apoptotic cell death through reactive oxygen species-mediated Fas upregulation and Bax activation. Int J Nanomed 2012, 7:1203-1214.
  • [18]Park EJ, Yi J, Chung KH, Ryu DY, Choi J, Park K: Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol Lett 2008, 180:222-229.
  • [19]Ruh H, Kühl B, Brenner-Weiss G, Hopf C, Diabaté S, Weiss C: Identification of serum proteins bound to industrial nanomaterials. Toxicol Lett 2012, 208:41-50.
  • [20]Suwalsky M, Villena F, Norris B, Soto MA, Sotomayor CP, Messori L, Zatta P: Structural effects of titanium citrate on the human erythrocyte membrane. J Inorg Biochem 2005, 99:764-770.
  • [21]Rothen-Rutishauser BM, Schurch S, Haenni B, Kapp N, Gehr P: Interaction of fine particles and nanoparticles with red blood cells visualized with advanced microscopic techniques. Environ Sci Technol 2006, 40:4353-4359.
  • [22]Suwalsky M, Novoa V, Villena F, Sotomayor CP, Aguilar LF, Ronowska A, Szutowicz A: Structural effects of Zn (2+) on cell membranes and molecular models. J Inorg Biochem 2009, 103:797-804.
  • [23]Zupanc J, Valant J, Drobne D, Kralj-Iglič V, Iglič A: A new approach to analyse effects of nanoparticles on lipid vesicles. Int J Biomed Nanosci Nanotechnol 2010, 1:34-51.
  • [24]Zupanc J, Drobne D, Drašler B, Valant J, Iglič A, Kralj-Iglič V, Makovec D, Rappolt M, Sartori B, Kogej K: Experimental evidence for the interaction of C-60 fullerene with lipid vesicle membranes. Carbon 2012, 50:1170-1178.
  • [25]Angelova MI, Soleau S, Méléard PH, Faucon F, Bothorel P: Preparation of giant vesicles by external AC electric fields. Kinetics and applications. Prog Coll Pol Sci 1992, 89:127-131.
  • [26]Peterlin P, Arrigler V: Electroformation in a flow chamber with solution exchange as a means of preparation of flaccid giant vesicles. Colloid Surface B 2008, 64:77-87.
  • [27]Bagatolli LA, Parasassi T, Gratton E: Giant phospholipid vesicles: comparison among the whole lipid sample characteristics using different preparation methods: A two photon fluorescence microscopy study. Chem Phys Lipids 2000, 105:135-147.
  • [28]Pavlič JI, Genova J, Zheliaskova A, Iglič A, Mitov MD: Electroformation of neutral and negatively charged phospholipid giant vesicles under physiological conditions. CR Acad Bulg Sci 2010, 63:497-502.
  • [29]Baumgart T, Hunt G, Farkas ER, Webb WW, Feigenson GW: Fluorescence probe partitioning between Lo/Ld phases in lipid membranes. Biochim Biophys Acta 2007, 9:2182-2194.
  • [30]Wang B, Zhang L, Bae SC, Granick S: Nanoparticle-induced surface reconstruction of phospholipid membranes. Proc Natl Acad Sci 2008, 105:8171-8175.
  • [31]Peterlin P, Jaklič G, Pisanski T: Determining membrane permeability of giant phospholipid vesicles from a series of videomicroscopy images. Meas Sci Technol 2009, 20:055801-055807.
  • [32]Peterlin P, Arrigler V, Haleva E, Diamant H: Law of corresponding states for osmotic swelling of vesicles. Soft Matter 2012, 8(7):2185-2193.
  • [33]Bivas I, Hanusse P, Bothorel P, Lalanne J, Aguerre-Chariol O: An application of the optical microscopy to the determination of the curvature elastic modulus of biological and model membranes. J Physiol Paris 1987, 48:855-867.
  • [34]Bivas I: Shape fluctuations of nearly spherical lipid vesicles and emulsion droplets. Phys Rev E 2010, 81(6):061911.
  • [35]Ambrožič A, Čučnik S, Tomšič N, Urbanija J, Lokar M, Babnik B, Rozman B, Iglič A, Kralj-Iglič V: Interaction of giant phospholipid vesicles containing cardiolipin and cholesterol with ß2-glycoprotein-I and anti-ß2-glycoprotein-I antibodies. Autoimmun Rev 2006, 6:10-15.
  • [36]Khairullina AY, Ol'shanskaya TV, Filimonenko DS, Kozlova NM, Garmaza MY, Slobozhanina EI: Optical, nanostructural, and biophysical properties of Zn-induced changes in human erythrocyte membranes. Opt Spectrosc 2011, 110:534-540.
  • [37]Aisaka Y, Kawaguchi R, Watanabe S, Ikeda M, Igisu H: Hemolysis caused by titanium dioxide particles. Inhal Toxicol 2008, 20:891-893.
  • [38]Pujalté I, Passagne I, Brouillaud B, Tréguer M, Durand E, Ohayon-Courtès C, L'Azou B: Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells. Part Fibre Toxicol 2011, 8:10. BioMed Central Full Text
  • [39]Gorbet MB, Sefton MV: Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes-rewiev. Biomaterials 2004, 25:5681-5703.
  • [40]Kvietys PR, Grager DN: Role of reactive oxygen and nitrogen species in the vascular responses to inflammation. Free Radical Biol Med 2012, 25:556-592.
  • [41]Vermylen J, Nemmar A, Nemery B, Hoylaerts FM: Ambient air pollution and acute myocardial infarction. J Thromb Haemost 2005, 3(9):1955-1961.
  • [42]Shannahan JH, Kodavanti UP, Brown JM: Manufactured and airborne nanoparticle cardiopulmonary interactions: a review of mechanisms and the possible contribution of mast cells. Inhal Toxicol 2012, 24:320-339.
  • [43]Combes RD, Balls M: Integrated testing strategies for toxicity employing new and existing technologies. Altern Lab Anim 2011, 39:213-225.
  • [44]Valant J, Iavicoli I, Drobne D: The importance of a validated standard methodology to define in vitro toxicity of nano-TiO2. Protoplasma 2012, 249:493-502.
  • [45]Kralj-Iglič V, Iglič A: A simple statistical mechanical approach to the free energy of the electric double layer including the excluded volume effect. J Phys II 1996, 6:477-491.
  • [46]May S, Iglič A, Reščič J, Maset S, Bohinc K: Bridging like-charged macroions through long divalent rod-like ions. J Phys Chem B 2008, 112:1685-1692.
  • [47]Urbanija J, Bohinc K, Bellen A, Maset S, Iglič A, Kralj-Iglič V, Kumar PB: Attraction between negatively charged surfaces mediated by spherical counterions with quadrupolar charge distribution. J Chem Phys 2008, 129:105101.
  • [48]Urbanija J, Tomšič N, Lokar M, Ambrožič A, Čučnik S, Rozman B, Kandušer M, Iglič A, Kralj-Iglič V: Coalescence of phospholipid membranes as a possible origin of anticoagulant effect of serum proteins. Chem Phys Lipids 2007, 150:49-57.
  • [49]Frank M, Manček-Keber M, Kržan M, Sodin-Šemrl S, Jerala R, Iglič A, Rozman B, Kralj-Iglič V: Prevention of microvesiculation by adhesion of buds to the mother cell membrane -A possible anticoagulant effect of healthy donor plasma. Autoimmun Rev 2008, 7:240-245.
  • [50]Janša R, Šuštar V, Frank M, Sušanj P, Bešter J, Manček-Keber M, Kržan M, Iglič A: Number of microvesicles in peripheral blood and ability of plasma to induce adhesion between phospholipid membranes in 19 patients with gastrointestinal diseases. Blood Cell Mol Dis 2008, 41:124-132.
  • [51]Spaet TH, Zucker MB: Mechanism of platelet plug formation and role of adenosine diphosphate. Am J Physiol 1964, 206:1267-1274.
  • [52]Penglis F, Michal F: The induction of blood platelet aggregation by divalent cations. Experientia 1969, 25:745-746.
  • [53]Trybulec M, Kowalska MA, McLane MA, Silver L, Lu W, Niewiarowski S: Exposure of platelet fibrinogen receptors by zinc ions: role of protein kinase C. Exp Biol Med 1993, 203:108-116.
  • [54]Porter E, Muller K, Skepper J, Midgley P, Welland M: Uptake of C60 by human monocyte macrophages, its localization and implication for toxicity: studied by high resolution etlectron microskopy and electron tomography. Biomaterials 2006, 2:409-419.
  • [55]Kralj-Iglič V, Gomišček G, Majhenc J, Arrigler V, Svetina S: Myelin-like protrusions of giant phospholipid vesicles prepared by electroformation. Colloid Surface A 2001, 181:315-318.
  • [56]Takenaka S, Karg E, Roth C, Schulz H, Ziesenis A, Heinzmann U, Schramel P, Heyder J: Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ Health Persp 2001, 109:547-551.
  • [57]Zupanc J, Drobne D, Erdogmus D, Bas E, Valant J, Dobnikar A: Biological reactivity of nanoparticles: mosaics from optical microscopy videos of giant lipid vesicles. J Biomed Opt 2011, 16(2):26003-26010.
  • [58]Zupanc J, Ster B, Drobne D: Markov random field model for segmenting large populations of lipid vesicles from micrographs. J Liposome Res 2011, 21(4):315-323.
  文献评价指标  
  下载次数:90次 浏览次数:27次