BMC Geriatrics | |
Predicting of elderly population structure and density by a novel grey fractional-order model with theta residual optimization: a case study of Shanghai City, China | |
Research | |
Yingjie Yang1  Jiaxin Li2  Xiaojun Guo2  Xinyao Zhu2  Jingliang Jin2  | |
[1] Institute of Artificial Intelligence, De Montfort University, LE1 9BH, Leicester, UK;School of Science, Nantong University, 226019, Nantong, China; | |
关键词: Population aging; Elderly population prediction; Grey prediction model; Fractional order accumulation; Theta residual optimization; | |
DOI : 10.1186/s12877-023-04197-2 | |
received in 2022-08-19, accepted in 2023-07-26, 发布年份 2023 | |
来源: Springer | |
【 摘 要 】
Background Accurately predicting the future development trend of population aging is conducive to accelerating the development of the elderly care industry. This study constructed a combined optimization grey prediction model to predict the structure and density of elderly population.MethodsIn this paper, a GT-FGM model is proposed, which combines Theta residual optimization with fractional-order accumulation operator. Fractional-order accumulation can effectively weaken the randomness of the original data sequence. Meanwhile, Theta residual optimization can adjust parameter by minimizing the mean absolute error. And the population statistics of Shanghai city from 2006 to 2020 were selected for prediction analysis. By comparing with the other traditional grey prediction methods, three representative error indexes (MAE, MAPE, RMSE) were conducting for error analysis.ResultsCompared with the FGM model, GM (1,1) model, Verhulst model, Logistic model, SES and other classical prediction methods, the GT-FGM model shows significant forecasting advantages, and its multi-step rolling prediction accuracy is superior to other prediction methods. The results show that the elderly population density in nine districts in Shanghai will exceed 0.5 by 2030, among which Huangpu District has the highest elderly population density, reaching 0.6825. There has been a steady increase in the elderly population over the age of 60.ConclusionsThe GT-FGM model can improve the prediction accuracy effectively. The elderly population in Shanghai shows a steady growth trend on the whole, and the differences between districts are obvious. The government should build a modern pension industry system according to the aging degree of the population in each region, and promote the balanced development of each region.
【 授权许可】
CC BY
© BioMed Central Ltd., part of Springer Nature 2023
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202310111845708ZK.pdf | 2733KB | download | |
Fig. 7 | 1273KB | Image | download |
13690_2023_1170_Article_IEq75.gif | 1KB | Image | download |
12888_2023_5142_Article_IEq13.gif | 1KB | Image | download |
12902_2023_1459_Article_IEq2.gif | 1KB | Image | download |
13690_2023_1170_Article_IEq206.gif | 1KB | Image | download |
Fig. 1 | 1945KB | Image | download |
Fig. 1 | 563KB | Image | download |
MediaObjects/42004_2023_1001_MOESM3_ESM.xlsx | 1413KB | Other | download |
MediaObjects/12888_2023_5161_MOESM1_ESM.docx | 15KB | Other | download |
Fig. 1 | 295KB | Image | download |
Fig. 2 | 831KB | Image | download |
MediaObjects/12974_2023_2886_MOESM4_ESM.tif | 30237KB | Other | download |
Fig. 5 | 79KB | Image | download |
Fig. 2 | 163KB | Image | download |
Fig. 3 | 281KB | Image | download |
Fig. 4 | 710KB | Image | download |
Fig. 42 | 79KB | Image | download |
Fig. 4 | 4486KB | Image | download |
Fig. 6 | 2055KB | Image | download |
Fig. 2 | 1857KB | Image | download |
MediaObjects/13046_2023_2828_MOESM5_ESM.xlsx | 9KB | Other | download |
Fig. 4 | 2998KB | Image | download |
12888_2023_5172_Article_IEq10.gif | 1KB | Image | download |
MediaObjects/12902_2023_1444_MOESM5_ESM.docx | 30KB | Other | download |
Fig. 1 | 98KB | Image | download |
Fig. 1 | 73KB | Image | download |
MediaObjects/12974_2023_2889_MOESM4_ESM.docx | 13KB | Other | download |
MediaObjects/12960_2023_858_MOESM1_ESM.doc | 55KB | Other | download |
Fig. 6 | 237KB | Image | download |
Fig. 3 | 165KB | Image | download |
Fig. 6 | 81KB | Image | download |
Fig. 9 | 86KB | Image | download |
Fig. 4 | 165KB | Image | download |
Fig. 3 | 407KB | Image | download |
13690_2023_1170_Article_IEq225.gif | 1KB | Image | download |
Fig. 3 | 917KB | Image | download |
Fig. 7 | 739KB | Image | download |
13690_2023_1170_Article_IEq83.gif | 1KB | Image | download |
Fig. 3 | 786KB | Image | download |
13690_2023_1170_Article_IEq85.gif | 1KB | Image | download |
13690_2023_1170_Article_IEq87.gif | 1KB | Image | download |
13690_2023_1170_Article_IEq88.gif | 1KB | Image | download |
13690_2023_1170_Article_IEq89.gif | 1KB | Image | download |
13690_2023_1170_Article_IEq94.gif | 1KB | Image | download |
13690_2023_1170_Article_IEq96.gif | 1KB | Image | download |
MediaObjects/40337_2023_888_MOESM1_ESM.docx | 15KB | Other | download |
Fig. 3 | 502KB | Image | download |
Fig. 8 | 1137KB | Image | download |
Fig. 3 | 1976KB | Image | download |
Fig. 2 | 2464KB | Image | download |
Fig. 4 | 144KB | Image | download |
562KB | Image | download | |
MediaObjects/13100_2023_301_MOESM8_ESM.pdf | 53KB | download | |
Fig. 1 | 281KB | Image | download |
703KB | Image | download | |
MediaObjects/12894_2023_1317_MOESM5_ESM.csv | 12KB | Other | download |
MediaObjects/41408_2023_916_MOESM1_ESM.pdf | 2114KB | download | |
Fig. 1 | 697KB | Image | download |
Fig. 1 | 305KB | Image | download |
Fig. 2 | 1087KB | Image | download |
42004_2023_995_Article_IEq1.gif | 1KB | Image | download |
13690_2023_1170_Article_IEq13.gif | 1KB | Image | download |
Fig. 1 | 875KB | Image | download |
Fig. 6 | 3544KB | Image | download |
Fig. 1 | 53KB | Image | download |
Fig. 4 | 2086KB | Image | download |
MediaObjects/41408_2023_921_MOESM1_ESM.docx | 686KB | Other | download |
Fig. 2 | 1067KB | Image | download |
Fig. 3 | 453KB | Image | download |
Fig. 3 | 919KB | Image | download |
Fig. 2 | 823KB | Image | download |
Fig. 4 | 915KB | Image | download |
Fig. 3 | 1782KB | Image | download |
42004_2023_995_Article_IEq11.gif | 1KB | Image | download |
Fig. 1 | 442KB | Image | download |
MediaObjects/13690_2023_1170_MOESM1_ESM.docx | 50KB | Other | download |
Fig. 5 | 711KB | Image | download |
Fig. 5 | 1669KB | Image | download |
Fig. 5 | 517KB | Image | download |
Fig. 1 | 262KB | Image | download |
Fig. 9 | 3828KB | Image | download |
12888_2023_5168_Article_IEq2.gif | 1KB | Image | download |
12888_2023_5168_Article_IEq3.gif | 1KB | Image | download |
12888_2023_5168_Article_IEq4.gif | 1KB | Image | download |
13690_2023_1170_Article_IEq107.gif | 1KB | Image | download |
12888_2023_5172_Article_IEq20.gif | 1KB | Image | download |
Fig. 2 | 1420KB | Image | download |
Fig. 2 | 211KB | Image | download |
Fig. 3 | 1511KB | Image | download |
Fig. 6 | 727KB | Image | download |
MediaObjects/12888_2023_5074_MOESM1_ESM.docx | 122KB | Other | download |
Fig. 2 | 589KB | Image | download |
MediaObjects/12888_2023_5199_MOESM2_ESM.pdf | 263KB | download | |
MediaObjects/12888_2023_5151_MOESM1_ESM.docx | 155KB | Other | download |
MediaObjects/13570_2023_286_MOESM1_ESM.docx | 29KB | Other | download |
Fig. 2 | 406KB | Image | download |
Fig. 1 | 1222KB | Image | download |
Fig. 1 | 60KB | Image | download |
MediaObjects/12888_2023_5196_MOESM1_ESM.docx | 66KB | Other | download |
13690_2023_1170_Article_IEq108.gif | 1KB | Image | download |
Fig. 5 | 1835KB | Image | download |
Fig. 1 | 322KB | Image | download |
Fig. 1 | 472KB | Image | download |
12888_2023_5172_Article_IEq21.gif | 1KB | Image | download |
MediaObjects/13227_2023_218_MOESM4_ESM.pdf | 1656KB | download |
【 图 表 】
12888_2023_5172_Article_IEq21.gif
Fig. 1
Fig. 1
Fig. 5
13690_2023_1170_Article_IEq108.gif
Fig. 1
Fig. 1
Fig. 2
Fig. 2
Fig. 6
Fig. 3
Fig. 2
Fig. 2
12888_2023_5172_Article_IEq20.gif
13690_2023_1170_Article_IEq107.gif
12888_2023_5168_Article_IEq4.gif
12888_2023_5168_Article_IEq3.gif
12888_2023_5168_Article_IEq2.gif
Fig. 9
Fig. 1
Fig. 5
Fig. 5
Fig. 5
Fig. 1
42004_2023_995_Article_IEq11.gif
Fig. 3
Fig. 4
Fig. 2
Fig. 3
Fig. 3
Fig. 2
Fig. 4
Fig. 1
Fig. 6
Fig. 1
13690_2023_1170_Article_IEq13.gif
42004_2023_995_Article_IEq1.gif
Fig. 2
Fig. 1
Fig. 1
Fig. 1
Fig. 4
Fig. 2
Fig. 3
Fig. 8
Fig. 3
13690_2023_1170_Article_IEq96.gif
13690_2023_1170_Article_IEq94.gif
13690_2023_1170_Article_IEq89.gif
13690_2023_1170_Article_IEq88.gif
13690_2023_1170_Article_IEq87.gif
13690_2023_1170_Article_IEq85.gif
Fig. 3
13690_2023_1170_Article_IEq83.gif
Fig. 7
Fig. 3
13690_2023_1170_Article_IEq225.gif
Fig. 3
Fig. 4
Fig. 9
Fig. 6
Fig. 3
Fig. 6
Fig. 1
Fig. 1
12888_2023_5172_Article_IEq10.gif
Fig. 4
Fig. 2
Fig. 6
Fig. 4
Fig. 42
Fig. 4
Fig. 3
Fig. 2
Fig. 5
Fig. 2
Fig. 1
Fig. 1
Fig. 1
13690_2023_1170_Article_IEq206.gif
12902_2023_1459_Article_IEq2.gif
12888_2023_5142_Article_IEq13.gif
13690_2023_1170_Article_IEq75.gif
Fig. 7
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]