期刊论文详细信息
BMC Geriatrics
Predicting of elderly population structure and density by a novel grey fractional-order model with theta residual optimization: a case study of Shanghai City, China
Research
Yingjie Yang1  Jiaxin Li2  Xiaojun Guo2  Xinyao Zhu2  Jingliang Jin2 
[1] Institute of Artificial Intelligence, De Montfort University, LE1 9BH, Leicester, UK;School of Science, Nantong University, 226019, Nantong, China;
关键词: Population aging;    Elderly population prediction;    Grey prediction model;    Fractional order accumulation;    Theta residual optimization;   
DOI  :  10.1186/s12877-023-04197-2
 received in 2022-08-19, accepted in 2023-07-26,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

Background Accurately predicting the future development trend of population aging is conducive to accelerating the development of the elderly care industry. This study constructed a combined optimization grey prediction model to predict the structure and density of elderly population.MethodsIn this paper, a GT-FGM model is proposed, which combines Theta residual optimization with fractional-order accumulation operator. Fractional-order accumulation can effectively weaken the randomness of the original data sequence. Meanwhile, Theta residual optimization can adjust parameter by minimizing the mean absolute error. And the population statistics of Shanghai city from 2006 to 2020 were selected for prediction analysis. By comparing with the other traditional grey prediction methods, three representative error indexes (MAE, MAPE, RMSE) were conducting for error analysis.ResultsCompared with the FGM model, GM (1,1) model, Verhulst model, Logistic model, SES and other classical prediction methods, the GT-FGM model shows significant forecasting advantages, and its multi-step rolling prediction accuracy is superior to other prediction methods. The results show that the elderly population density in nine districts in Shanghai will exceed 0.5 by 2030, among which Huangpu District has the highest elderly population density, reaching 0.6825. There has been a steady increase in the elderly population over the age of 60.ConclusionsThe GT-FGM model can improve the prediction accuracy effectively. The elderly population in Shanghai shows a steady growth trend on the whole, and the differences between districts are obvious. The government should build a modern pension industry system according to the aging degree of the population in each region, and promote the balanced development of each region.

【 授权许可】

CC BY   
© BioMed Central Ltd., part of Springer Nature 2023

【 预 览 】
附件列表
Files Size Format View
RO202310111845708ZK.pdf 2733KB PDF download
Fig. 7 1273KB Image download
13690_2023_1170_Article_IEq75.gif 1KB Image download
12888_2023_5142_Article_IEq13.gif 1KB Image download
12902_2023_1459_Article_IEq2.gif 1KB Image download
13690_2023_1170_Article_IEq206.gif 1KB Image download
Fig. 1 1945KB Image download
Fig. 1 563KB Image download
MediaObjects/42004_2023_1001_MOESM3_ESM.xlsx 1413KB Other download
MediaObjects/12888_2023_5161_MOESM1_ESM.docx 15KB Other download
Fig. 1 295KB Image download
Fig. 2 831KB Image download
MediaObjects/12974_2023_2886_MOESM4_ESM.tif 30237KB Other download
Fig. 5 79KB Image download
Fig. 2 163KB Image download
Fig. 3 281KB Image download
Fig. 4 710KB Image download
Fig. 42 79KB Image download
Fig. 4 4486KB Image download
Fig. 6 2055KB Image download
Fig. 2 1857KB Image download
MediaObjects/13046_2023_2828_MOESM5_ESM.xlsx 9KB Other download
Fig. 4 2998KB Image download
12888_2023_5172_Article_IEq10.gif 1KB Image download
MediaObjects/12902_2023_1444_MOESM5_ESM.docx 30KB Other download
Fig. 1 98KB Image download
Fig. 1 73KB Image download
MediaObjects/12974_2023_2889_MOESM4_ESM.docx 13KB Other download
MediaObjects/12960_2023_858_MOESM1_ESM.doc 55KB Other download
Fig. 6 237KB Image download
Fig. 3 165KB Image download
Fig. 6 81KB Image download
Fig. 9 86KB Image download
Fig. 4 165KB Image download
Fig. 3 407KB Image download
13690_2023_1170_Article_IEq225.gif 1KB Image download
Fig. 3 917KB Image download
Fig. 7 739KB Image download
13690_2023_1170_Article_IEq83.gif 1KB Image download
Fig. 3 786KB Image download
13690_2023_1170_Article_IEq85.gif 1KB Image download
13690_2023_1170_Article_IEq87.gif 1KB Image download
13690_2023_1170_Article_IEq88.gif 1KB Image download
13690_2023_1170_Article_IEq89.gif 1KB Image download
13690_2023_1170_Article_IEq94.gif 1KB Image download
13690_2023_1170_Article_IEq96.gif 1KB Image download
MediaObjects/40337_2023_888_MOESM1_ESM.docx 15KB Other download
Fig. 3 502KB Image download
Fig. 8 1137KB Image download
Fig. 3 1976KB Image download
Fig. 2 2464KB Image download
Fig. 4 144KB Image download
562KB Image download
MediaObjects/13100_2023_301_MOESM8_ESM.pdf 53KB PDF download
Fig. 1 281KB Image download
703KB Image download
MediaObjects/12894_2023_1317_MOESM5_ESM.csv 12KB Other download
MediaObjects/41408_2023_916_MOESM1_ESM.pdf 2114KB PDF download
Fig. 1 697KB Image download
Fig. 1 305KB Image download
Fig. 2 1087KB Image download
42004_2023_995_Article_IEq1.gif 1KB Image download
13690_2023_1170_Article_IEq13.gif 1KB Image download
Fig. 1 875KB Image download
Fig. 6 3544KB Image download
Fig. 1 53KB Image download
Fig. 4 2086KB Image download
MediaObjects/41408_2023_921_MOESM1_ESM.docx 686KB Other download
Fig. 2 1067KB Image download
Fig. 3 453KB Image download
Fig. 3 919KB Image download
Fig. 2 823KB Image download
Fig. 4 915KB Image download
Fig. 3 1782KB Image download
42004_2023_995_Article_IEq11.gif 1KB Image download
Fig. 1 442KB Image download
MediaObjects/13690_2023_1170_MOESM1_ESM.docx 50KB Other download
Fig. 5 711KB Image download
Fig. 5 1669KB Image download
Fig. 5 517KB Image download
Fig. 1 262KB Image download
Fig. 9 3828KB Image download
12888_2023_5168_Article_IEq2.gif 1KB Image download
12888_2023_5168_Article_IEq3.gif 1KB Image download
12888_2023_5168_Article_IEq4.gif 1KB Image download
13690_2023_1170_Article_IEq107.gif 1KB Image download
12888_2023_5172_Article_IEq20.gif 1KB Image download
Fig. 2 1420KB Image download
Fig. 2 211KB Image download
Fig. 3 1511KB Image download
Fig. 6 727KB Image download
MediaObjects/12888_2023_5074_MOESM1_ESM.docx 122KB Other download
Fig. 2 589KB Image download
MediaObjects/12888_2023_5199_MOESM2_ESM.pdf 263KB PDF download
MediaObjects/12888_2023_5151_MOESM1_ESM.docx 155KB Other download
MediaObjects/13570_2023_286_MOESM1_ESM.docx 29KB Other download
Fig. 2 406KB Image download
Fig. 1 1222KB Image download
Fig. 1 60KB Image download
MediaObjects/12888_2023_5196_MOESM1_ESM.docx 66KB Other download
13690_2023_1170_Article_IEq108.gif 1KB Image download
Fig. 5 1835KB Image download
Fig. 1 322KB Image download
Fig. 1 472KB Image download
12888_2023_5172_Article_IEq21.gif 1KB Image download
MediaObjects/13227_2023_218_MOESM4_ESM.pdf 1656KB PDF download
【 图 表 】

12888_2023_5172_Article_IEq21.gif

Fig. 1

Fig. 1

Fig. 5

13690_2023_1170_Article_IEq108.gif

Fig. 1

Fig. 1

Fig. 2

Fig. 2

Fig. 6

Fig. 3

Fig. 2

Fig. 2

12888_2023_5172_Article_IEq20.gif

13690_2023_1170_Article_IEq107.gif

12888_2023_5168_Article_IEq4.gif

12888_2023_5168_Article_IEq3.gif

12888_2023_5168_Article_IEq2.gif

Fig. 9

Fig. 1

Fig. 5

Fig. 5

Fig. 5

Fig. 1

42004_2023_995_Article_IEq11.gif

Fig. 3

Fig. 4

Fig. 2

Fig. 3

Fig. 3

Fig. 2

Fig. 4

Fig. 1

Fig. 6

Fig. 1

13690_2023_1170_Article_IEq13.gif

42004_2023_995_Article_IEq1.gif

Fig. 2

Fig. 1

Fig. 1

Fig. 1

Fig. 4

Fig. 2

Fig. 3

Fig. 8

Fig. 3

13690_2023_1170_Article_IEq96.gif

13690_2023_1170_Article_IEq94.gif

13690_2023_1170_Article_IEq89.gif

13690_2023_1170_Article_IEq88.gif

13690_2023_1170_Article_IEq87.gif

13690_2023_1170_Article_IEq85.gif

Fig. 3

13690_2023_1170_Article_IEq83.gif

Fig. 7

Fig. 3

13690_2023_1170_Article_IEq225.gif

Fig. 3

Fig. 4

Fig. 9

Fig. 6

Fig. 3

Fig. 6

Fig. 1

Fig. 1

12888_2023_5172_Article_IEq10.gif

Fig. 4

Fig. 2

Fig. 6

Fig. 4

Fig. 42

Fig. 4

Fig. 3

Fig. 2

Fig. 5

Fig. 2

Fig. 1

Fig. 1

Fig. 1

13690_2023_1170_Article_IEq206.gif

12902_2023_1459_Article_IEq2.gif

12888_2023_5142_Article_IEq13.gif

13690_2023_1170_Article_IEq75.gif

Fig. 7

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  文献评价指标  
  下载次数:7次 浏览次数:4次