期刊论文详细信息
EJNMMI Research
TSPO imaging using the novel PET ligand [18F]GE-180: quantification approaches in patients with multiple sclerosis
Astrid Gosewisch1  Marcus Unterrainer1  Nathalie Lisa Albert1  Sibylle Ziegler1  Larissa Ermoschkin1  Guido Böning1  Matthias Brendel1  Anika Brunegraf1  Peter Bartenstein1  Simon Lindner1  Lena Vomacka1  Rainer Rupprecht2  Christopher Buckley3  Tania Kümpfel4  Christoph Mahler4  Martin Kerschensteiner4 
[1] Department of Nuclear Medicine, University Hospital, LMU Munich;Department of Psychiatry and Psychotherapy, University of Regensburg;GE Healthcare, Grove Centre;Institute of Clinical Neuroimmunology, University Hospital, LMU Munich;
关键词: PET;    [18F]GE-180;    Multiple sclerosis;    TSPO;    Quantification;   
DOI  :  10.1186/s13550-017-0340-x
来源: DOAJ
【 摘 要 】

Abstract Background PET ligands targeting the translocator protein (TSPO) represent promising tools to visualise neuroinflammation. Here, we analysed parameters obtained in dynamic and static PET images using the novel TSPO ligand [18F]GE-180 in patients with relapsing remitting multiple sclerosis (RRMS) and an approach for semi-quantitative assessment of this disease in clinical routine. Seventeen dynamic [18F]GE-180 PET scans of RRMS patients were evaluated (90 min). A pseudo-reference region (PRR) was defined after identification of the least disease-affected brain area by voxel-based comparison with six healthy controls (HC) and upon exclusion of voxels suspected of being affected in static 60–90 min p.i. images. Standardised uptake value ratios (SUVR) obtained from static images normalised to PRR were correlated to the distribution volume ratios (DVR) derived from dynamic data with Logan reference tissue model. Results Group comparison with HC revealed white matter and thalamus as most affected regions. Fewest differences were found in grey matter, and normalisation to frontal cortex (FC) yielded the greatest reduction in variability of healthy grey and white matter. Hence, FC corrected for affected voxels was chosen as PRR, leading to time-activity curves of FC which were congruent to HC data (SUV60–90 0.37, U test P = 0.42). SUVR showed a very strong correlation with DVR (Pearson ρ > 0.9). Focal MS lesions exhibited a high SUVR (range, 1.3–3.2). Conclusions This comparison with parameters from dynamic data suggests that SUVR normalised to corrected frontal cortex as PRR is suitable for the quantification of [18F]GE-180 uptake in lesions and different brain regions of RRMS patients. This efficient diagnostic protocol based on static [18F]GE-180 PET scans acquired 60–90 min p.i. allows the semi-quantitative assessment of neuroinflammation in RRMS patients in clinical routine.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:2次